ترغب بنشر مسار تعليمي؟ اضغط هنا

126 - F.D. Barazza , C. Wolf , M.E. Gray 2009
We present a study of the population of bright early-type dwarf galaxies in the multiple-cluster system Abell 901/902. We use data from the STAGES survey and COMBO-17 to investigate the relation between the color and structural properties of the dwar fs and their location in the cluster. The definition of the dwarf sample is based on the central surface brightness and includes galaxies in the luminosity range -16 >= M_B >~-19 mag. Using a fit to the color magnitude relation of the dwarfs, our sample is divided into a red and blue subsample. We find a color-density relation in the projected radial distribution of the dwarf sample: at the same luminosity dwarfs with redder colors are located closer to the cluster centers than their bluer counterparts. Furthermore, the redder dwarfs are on average more compact and rounder than the bluer dwarfs. These findings are consistent with theoretical expectations assuming that bright early-type dwarfs are the remnants of transformed late-type disk galaxies involving processes such as ram pressure stripping and galaxy harassment. This indicates that a considerable fraction of dwarf elliptical galaxies in clusters are the results of transformation processes related to interactions with their host cluster.
We present a study of large-scale bars in field and cluster environments out to redshifts of ~0.8 using a final sample of 945 moderately inclined disk galaxies drawn from the EDisCS project. We characterize bars and their host galaxies and look for r elations between the presence of a bar and the properties of the underlying disk. We investigate whether the fraction and properties of bars in clusters are different from their counterparts in the field. The total optical bar fraction in the redshift range z=0.4-0.8 (median z=0.60), averaged over the entire sample, is 25% (20% for strong bars). For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. We find that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher (~31%) than at larger distances (~18%). These findings however rely on a relatively small subsample and might be affected by small number statistics. In agreement with local studies, we find that disk-dominated galaxies have a higher optical bar fraction (~45%) than bulge-dominated galaxies (~15%). This result is based on Hubble types and effective radii and does not change with redshift. The latter finding implies that bar formation or dissolution is strongly connected to the emergence of the morphological structure of a disk and is typically accompanied by a transition in the Hubble type. (abridged)
135 - Fabio D. Barazza 2009
We present the first study of large-scale bars in clusters at intermediate redshifts (z=0.4-0.8). We compare the properties of the bars and their host galaxies in the clusters with those of a field sample in the same redshift range. We use a sample o f 945 moderately inclined disk galaxies drawn from the EDisCS project. The morphological classification of the galaxies and the detection of bars are based on deep HST/ACS F814W images. The total optical bar fraction in the redshift range z=0.4-0.8, averaged over the entire sample, is 25%. This is lower than found locally, but in good agreement with studies of bars in field environments at intermediate redshifts. For the cluster and field subsamples, we measure bar fractions of 24% and 29%, respectively. In agreement with local studies, we find that disk-dominated galaxies have a higher bar fraction than bulge-dominated galaxies. We also find, based on a small subsample, that bars in clusters are on average longer than in the field and preferentially found close to the cluster center, where the bar fraction is somewhat higher than at larger distances.
We present a study of large-scale bars in the local Universe, based on a large sample of ~3692 galaxies, with -18.5 <= M_g < -22.0 mag and redshift 0.01 <= z < 0.03, drawn from the SDSS. Our sample includes many galaxies that are disk-dominated and o f late Hubble types. Both color cuts and Sersic cuts yield a similar sample of ~2000 disk galaxies. We characterize bars and disks by ellipse-fitting r-band images and applying quantitative criteria. After excluding highly inclined (>60 degrees) systems, we find the following results. (1) The optical r-band fraction (f_opt-r) of barred galaxies is ~48%-52%. (2) When galaxies are separated according to normalized half light radius (r_e/R_24), a remarkable result is seen: f_opt-r rises sharply, from ~40% in galaxies that have small r_e/R_24 and visually appear to host prominent bulges, to ~70% for galaxies that have large r_e/R_24 and appear disk-dominated. (3) f_opt-r rises for galaxies with bluer colors and higher central surface brightness. A weaker rise is seen toward lower masses. (4) We find that ~20% of our sample of disk galaxies appear to be ``quasi-bulgeless. (5) If we restrict our sample to bright galaxies and only consider bars that are strong (ellipticity >=0.4) and large enough (semi-major axis >=1.5 kpc) to be reliably characterized via ellipse-fitting out to z~0.8, we get an optical r-band fraction for strong bars f_opt-s of ~34%. This value is higher only by a modest factor of 1.4, compared to the value of ~24%+-4% reported at z~0.7-1.0. If one assumes that the increasing obscuration by dust and star formation over z~0 to 1.0 causes a further artificial loss of bars, the data even allow for a constant or rising fraction of strong bars with redshift.
198 - Fabio D. Barazza 2007
We present a study of large-scale bars in the local Universe, based on a large sample of ~3692 galaxies, with -18.5 <= M_g < -22.0 mag and redshift 0.01 <= z < 0.03, drawn from the Sloan Digitized Sky Survey. Our sample includes many galaxies that ar e disk-dominated and of late Hubble types. Both color cuts and Sersic cuts yield a similar sample of ~2000 disk galaxies. We characterize bars and disks by ellipse-fitting r-band images and applying quantitative criteria. After excluding highly inclined ($>60^{circ}$) systems, we find the following results. (1) The optical r-band fraction (f_opt-r) of barred galaxies, when averaged over the whole sample, is ~48%-52%. (2) When galaxies are separated according to half light radius (r_e), or normalized r_e/R_24, which is a measure of the bulge-to-disk (B/D) ratio, a remarkable result is seen: f_opt-r rises sharply, from ~40% in galaxies that have small r_e/R_24 and visually appear to host prominent bulges, to ~70% for galaxies that have large r_e/R_24 and appear disk-dominated. (3) $f_{rm opt-r}$ rises for galaxies with bluer colors (by ~30%) and lower masses (by ~15%-20%). (4) While hierarchical $Lambda$CDM models of galaxy evolution models fail to produce galaxies without classical bulges, our study finds that ~20% of disk galaxies appear to be ``quasi-bulgeless. (5) After applying the same cutoffs in magnitude (M_V<-19.3 mag), bar size (a_bar >= 1.5 kpc), and bar ellipticity (e_bar >=~0.4) that studies out to z~1 apply to ensure a complete sample, adequate spatial resolution, and reliable bar identification, we obtain an optical r-band bar fraction of 34%. This is comparable to the value reported at z~0.2-1.0, implying that the optical bar fraction does not decline dramatically by an order of magnitude in bright galaxies out to z~1. (abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا