ترغب بنشر مسار تعليمي؟ اضغط هنا

236 - Syamsundar De n 2015
The amplitude and phase noises of a dual-frequency vertical-external-cavity surface-emitting laser (DF-VECSEL) operating at telecom wavelength are theoretically and experimentally investigated in detail. In particular, the spectral behavior of the co rrelation between the intensity noises of the two modes of the DF-VECSEL is measured. Moreover, the correlation between the phase noise of the radio-frequency (RF) beatnote generated by optical mixing of the two laser modes with the intensity noises of the two modes is investigated. All these spectral behaviors of noise correlations are analyzed for two different values of the nonlinear coupling between the laser modes. We find that to describe the spectral behavior of noise correlations between the laser modes, it is of utmost importance to have a precise knowledge about the spectral behavior of the pump noise, which is the dominant source of noise in the frequency range of our interest (10 kHz to 35 MHz). Moreover, it is found that the noise correlation also depends on how the spatially separated laser modes of the DF-VECSEL intercept the noise from a multi-mode fiber-coupled laser diode used for pumping both the laser modes. To this aim, a specific experiment is reported, which aims at measuring the correlations between different spatial regions of the pump beam. The experimental results are in excellent agreement with a theoretical model based on modified rate equations.
76 - A. El Amili 2011
We present an experimental observation of phase locking effects in the intensity noise spectrum of a semiconductor laser. These noise correlations are created in the medium by coherent carrier-population oscillations induced by the beatnote between t he lasing and non-lasing modes of the laser. This phase locking leads to a modification of the intensity noise profile at around the cavity free-spectral-range value. The noise correlations are evidenced by varying the relative phase shift between the laser mode and the non-lasing adjacent side modes.
149 - O. Mhibik , D. Pab{oe}uf , C. Drag 2011
We report the relative frequency stabilization of an intracavity frequency doubled singly resonant optical parametric oscillator on a Fabry-Perotetalon. The red/orange radiation produced by the frequency doubling of the intracavity resonant idler is stabilized using the Pound-Drever-Hall locking technique. The relative frequency noise of this orange light, when integrated from 1 Hz to 50 kHz, corresponds to a standard deviation of 700 Hz. The frequency noise of the pump laser is shown experimentally to be transferred to the non resonant signal beam.
51 - T. Laupr^etre 2011
Propagation of light pulses through negative group velocity media is known to give rise to a number of paradoxical situations that seem to violate causality. The solution of these paradoxes has triggered the investigation of a number of interesting a nd unexpected features of light propagation. Here we report a combined theoretical and experimental study of the ring-down oscillations in optical cavities filled with a medium with such a strongly negative frequency dispersion to give a negative round-trip group delay time. We theoretically anticipate that causality imposes the existence of additional resonance peaks in the cavity transmission, resulting in a non-exponential decay of the cavity field and in a breakdown of the cavity decay rate concept. Our predictions are validated by simulations and by an experiment using a room-temperature gas of metastable helium atoms in the detuned electromagnetically induced transparency regime as the cavity medium.
97 - A. El Amili 2010
The role of coherent population oscillations is evidenced in the noise spectrum of an ultra-low noise lasers. This effect is isolated in the intensity noise spectrum of an optimized single-frequency vertical external cavity surface emitting laser. Th e coherent population oscillations induced by the lasing mode manifest themselves through their associated dispersion that leads to slow light effects probed by the spontaneous emission present in the non-lasing side modes.
124 - T. Laupr^etre 2009
Electromagnetically induced transparency (EIT) is observed in a three-level system composed of an excited state and two coherent superpositions of the two ground-state levels. This peculiar ground state basis is composed of the so-called bright and d ark states of the same atomic system in a standard coherent population trapping configuration. The characteristics of EIT, namely, width of the transmission window and reduced group velocity of light, in this unusual basis, are theoretically and experimentally investigated and are shown to be essentially identical to those of standard EIT in the same system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا