ترغب بنشر مسار تعليمي؟ اضغط هنا

`Water In Star-forming regions with Herschel (WISH) is a key program on the Herschel Space Observatory designed to probe the physical and chemical structure of young stellar objects using water and related molecules and to follow the water abundance from collapsing clouds to planet-forming disks. About 80 sources are targeted covering a wide range of luminosities and evolutionary stages, from cold pre-stellar cores to warm protostellar envelopes and outflows to disks around young stars. Both the HIFI and PACS instruments are used to observe a variety of lines of H2O, H218O and chemically related species. An overview of the scientific motivation and observational strategy of the program is given together with the modeling approach and analysis tools that have been developed. Initial science results are presented. These include a lack of water in cold gas at abundances that are lower than most predictions, strong water emission from shocks in protostellar environments, the importance of UV radiation in heating the gas along outflow walls across the full range of luminosities, and surprisingly widespread detection of the chemically related hydrides OH+ and H2O+ in outflows and foreground gas. Quantitative estimates of the energy budget indicate that H2O is generally not the dominant coolant in the warm dense gas associated with protostars. Very deep limits on the cold gaseous water reservoir in the outer regions of protoplanetary disks are obtained which have profound implications for our understanding of grain growth and mixing in disks.
Circumstellar disks are exposed to intense ultraviolet radiation from the young star. In the inner disks, the UV radiation can be enhanced by more than seven orders of magnitude compared with the average interstellar field, resulting in a physical an d chemical structure that resembles that of a dense photon-dominated region (PDR). This intense UV field affects the chemistry, the vertical structure of the disk, and the gas temperature, especially in the surface layers of the disk. The parameters which make disks different from traditional PDRs are discussed, including the shape of the UV radiation field, grain growth, the absence of PAHs, the gas/dust ratio and the presence of inner holes. New photorates for selected species, including simple ions, are presented. Also, a summary of available cross sections at Lyman alpha 1216 A is made. Rates are computed for radiation fields with color temperatures ranging from 4000 to 30,000 K, and can be applied to a wide variety of astrophysical regions including exo-planetary atmospheres. The importance of photoprocesses is illustrated for a number of representative disk models, including disk models with grain growth and settling.
126 - M.C. van Hemert 2008
Astronomical observations have shown that small carbonaceous molecules can persist in interstellar clouds exposed to intense ultraviolet radiation. Current astrochemical models lack quantitative information on photodissociation rates in order to inte rpret these data. We here present ab initio multi-reference configuration-interaction calculations of the vertical excitation energies, transition dipole moments and oscillator strengths for a number of astrophysically relevant molecules: C3, C4, C2H, l- and c-C3H, l- and c-C3H2, HC3H, l-C4H and l-C5H. Highly excited states up to the 9th root of each symmetry are computed, and several new states with large oscillator strengths are found below the ionization potentials. These data are used to calculate upper limits on photodissociation rates in the unattenuated interstellar radiation field by assuming that all absorptions above the dissociation limit lead to dissociation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا