ترغب بنشر مسار تعليمي؟ اضغط هنا

The Quark Gluon String Model (QGSM) reproduces well the global characteristics of the $pp$ collisions at RHIC and LHC, e.g., the pseudorapidity and transverse momenta distributions at different centralities. The main goal of this work is to employ th e Monte Carlo QGSM for description of femtoscopic characteristics in $pp$ collisions at RHIC and LHC. The study is concentrated on the low multiplicity and multiplicity averaged events, where no collective effects are expected. The different procedures for fitting the one-dimensional correlation functions of pions are studied and compared with the space-time distributions extracted directly from the model. Particularly, it is shown that the double Gaussian fit reveals the contributions coming separately from resonances and from directly produced particles. The comparison of model results with the experimental data favors decrease of particle formation time with rising collision energy.
60 - G. Eyyubova 2009
Formation and evolution of the elliptic flow pattern in Pb+Pb collisions at sqrt{s}=5.5 ATeV and in Au+Au collisions at sqrt{s}=200 AGeV are analyzed for different hadron species within the framework of HYDJET++ Monte-Carlo model. The model contains both hydrodynamic state and jets, thus allowing for a study of the interplay between the soft and hard processes. It is found that jets are terminating the rise of the elliptic flow with increasing transverse momentum. Since jets are more influential at LHC compared to RHIC, the elliptic flow at LHC should be weaker than that at RHIC. The influence of resonance decays on particle elliptic flow is investigated also. These final state interactions enhance the low-p_T part of the v_2 of pions and light baryons, and work towards the fulfilment of idealized constituent quark scaling.
Two microscopic models, UrQMD and QGSM, are used to extract the effective equation of state (EOS) of locally equilibrated nuclear matter produced in heavy-ion collisions at energies from 11.6 AGeV to 160 AGeV. Analysis is performed for the fixed cent ral cubic cell of volume V = 125 fm**3 and for the expanding cell that followed the growth of the central area with uniformly distributed energy. For all reactions the state of local equilibrium is nearly approached in both models after a certain relaxation period. The EOS has a simple linear dependence P/e = c_s**2 with 0.12 < c_s**2 < 0.145. Heavy resonances are shown to be responsible for deviations of the c_s**2(T) and c_s**2(mu_B) from linear behavior. In the T-mu_B and T-mu_S planes the EOS has also almost linear dependence and demonstrates kinks related not to the deconfinement phase transition but to inelastic freeze-out in the system.
Two microscopic models, UrQMD and QGSM, were employed to study the formation of locally equilibrated hot and dense nuclear matter in heavy-ion collisions at energies from 11.6 AGeV to 160 AGeV. Analysis was performed for the fixed central cubic cell of volume V = 125 fm**3 and for the expanding cell which followed the growth of the central area with uniformly distributed energy. To decide whether or not the equilibrium was reached, results of the microscopic calculations were compared to that of the statistical thermal model. Both dynamical models indicate that the state of kinetic, thermal and chemical equilibrium is nearly approached at any bombarding energy after a certain relaxation period. The higher the energy, the shorter the relaxation time. Equation of state has a simple linear dependence P = a(sqrt{s})*e, where a = c_s**2 is the sound velocity squared. It varies from 0.12 pm 0.01 at E_{lab} = 11.6 AGeV to 0.145 pm 0.005 at E_{lab} = 160 AGeV. Change of the slope in a(sqrt{s}) behavior occurs at E_{lab} = 40 AGeV and can be assigned to the transition from baryon-rich to meson-dominated matter. The phase diagrams in the T - mu_B plane show the presence of kinks along the lines of constant entropy per baryon. These kinks are linked to the inelastic (i.e. chemical) freeze-out in the system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا