ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial variability of polarization relaxation kinetics in relaxor ferroelectric 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 is studied using time-resolved Piezoresponse Force Microscopy. Local relaxation attributed to the reorientation of polar nanoregions is sho wn to follow stretched exponential dependence, exp(-(t/tau)^beta), with beta~~0.4, much larger than the macroscopic value determined from dielectric spectra (beta~~0.09). The spatial inhomogeneity of relaxation time distributions with the presence of 100-200 nm fast and slow regions is observed. The results are analyzed to map the Vogel-Fulcher temperatures on the nanoscale.
We study the effect of depolarization field related with inhomogeneous polarization distribution, strain and surface energy parameters on a domain wall profile near the surface of a ferroelectric film within the framework of Landau-Ginzburg-Devonshir e phenomenology. Both inhomogeneous elastic stress and positive surface energy lead to the wall broadening at electrically screened surface. For ferroelectrics with weak piezoelectric coupling, the extrapolation length that defines surface energy parameter, affects the wall broadening more strongly than inhomogeneous elastic stress. Unexpectedly, the domain wall profile follows a long-range power law when approaching the surface, while it saturates exponentially in the bulk. In materials with high piezoelectric coupling and negligibly small surface energy (i.e. high extrapolation length) inhomogeneous elastic stress effect dominates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا