ترغب بنشر مسار تعليمي؟ اضغط هنا

The technology of Silicon Drift Detectors (SDDs) has been selected for the two instruments aboard the Large Observatory For X-ray Timing (LOFT) space mission. LOFT underwent a three year long assessment phase as candidate for the M3 launch opportunit y within the Cosmic Vision 2015 -- 2025 long-term science plan of the European Space Agency. During the LOFT assessment phase, we studied the displacement damage produced in the SDDs by the protons trapped in the Earths magnetosphere. In a previous paper we discussed the effects of the Non Ionising Energy Losses from protons on the SDD leakage current. In this paper we report the measurement of the variation of Charge Collection Efficiency produced by displacement damage caused by protons and the comparison with the expected damage in orbit.
The silicon drift detectors are at the basis of the instrumentation aboard the Large Observatory For x-ray Timing (LOFT) satellite mission, which underwent a three year assessment phase within the Cosmic Vision 2015 - 2025 long-term science plan of t he European Space Agency. Silicon detectors are especially sensitive to the displacement damage, produced by the non ionising energy losses of charged and neutral particles, leading to an increase of the device leakage current and thus worsening the spectral resolution. During the LOFT assessment phase, we irradiated two silicon drift detectors with a proton beam at the Proton Irradiation Facility in the accelerator of the Paul Scherrer Institute and we measured the increase in leakage current. In this paper we report the results of the irradiation and we discuss the impact of the radiation damage on the LOFT scientific performance.
Since its early phases of operation, the AGILE mission is successfully observing Gamma Ray Bursts (GRBs) in the hard X-ray band with the SuperAGILE imager and in the MeV range with the Mini-Calorimeter. Up to now, three firm GRB detections were obtai ned above 25 MeV and some bursts were detected with lower statistical confidence in the same energy band. When a GRB is localized, either by SuperAGILE or Swift/BAT or INTEGRAL/IBIS or Fermi/GBM or IPN, inside the field of view of the Gamma Ray Imager of AGILE, a detection is searched for in the gamma ray band or an upper limit is provided. A promising result of AGILE is the detection of very short gamma ray transients, a few ms in duration and possibly identified with Terrestrial Gamma-ray Flashes. In this paper we show the current status of the observation of Gamma Ray Bursts and Terrestrial Gamma-ray Flashes with AGILE.
The observation of Gamma Ray Bursts (GRBs) in the gamma-ray band has been advanced by the AGILE and Fermi satellites after the era of the Compton Gamma-Ray Observatory. AGILE and Fermi are showing that the GeV-bright GRBs share a set of common featur es, particularly the high fluence from the keV up to the GeV energy bands, the high value of the minimum Lorentz factor, the presence of an extended emission of gamma-rays, often delayed with respect to lower energies, and finally the possible presence of multiple spectral components. GRB 100724B, localised in a joint effort by Fermi and the InterPlanetary Newtork, is the brightest burst detected in gamma-rays so far by AGILE. Characteristic features of GRB 100724B are the simultaneous emissions at MeV and GeV, without delayed onset nor time lag as shown by the analysis of the cross correlation function, and the significant spectral evolution in hard X-rays over the event duration. In this paper we show the analysis of the AGILE data of GRB 100724B and we discuss its features in the context of the bursts observed so far in gamma-rays and the recently proposed models.
GRB 070724B is the first Gamma Ray Burst localized by SuperAGILE, the hard X-ray monitor aboard the AGILE satellite. The coordinates of the event were published $sim 19$ hours after the trigger. The Swift X-Ray Telescope pointed at the SuperAGILE loc ation and detected the X-ray afterglow inside the SuperAGILE error circle. The AGILE gamma-ray Tracker and Minicalorimeter did not detect any significant gamma ray emission associated with GRB 070724B in the MeV and GeV range, neither prompt nor delayed. Searches of the optical afterglow were performed by the Swift UVOT and the Palomar automated 60-inch telescopes without any significant detection. Similarly the Very Large Array did not detect a radio afterglow. This is the first GRB event with a firm upper limit in the 100 MeV -- 30 GeV energy range, associated with an X-ray afterglow.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا