ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a network of agents that are cooperatively solving a global optimization problem, where the objective function is the sum of privately known local objective functions of the agents and the decision variables are coupled via linear constra ints. Recent literature focused on special cases of this formulation and studied their distributed solution through either subgradient based methods with O(1/sqrt(k)) rate of convergence (where k is the iteration number) or Alternating Direction Method of Multipliers (ADMM) based methods, which require a synchronous implementation and a globally known order on the agents. In this paper, we present a novel asynchronous ADMM based distributed method for the general formulation and show that it converges at the rate O(1/k).
Most existing work uses dual decomposition and subgradient methods to solve Network Utility Maximization (NUM) problems in a distributed manner, which suffer from slow rate of convergence properties. This work develops an alternative distributed Newt on-type fast converging algorithm for solving network utility maximization problems with self-concordant utility functions. By using novel matrix splitting techniques, both primal and dual updates for the Newton step can be computed using iterative schemes in a decentralized manner with limited information exchange. Similarly, the stepsize can be obtained via an iterative consensus-based averaging scheme. We show that even when the Newton direction and the stepsize in our method are computed within some error (due to finite truncation of the iterative schemes), the resulting objective function value still converges superlinearly to an explicitly characterized error neighborhood. Simulation results demonstrate significant convergence rate improvement of our algorithm relative to the existing subgradient methods based on dual decomposition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا