ترغب بنشر مسار تعليمي؟ اضغط هنا

88 - E. Michel , A. Baglin 2012
About 2 years ago, back in 2009, the first CoRoT Symposium was the occasion to present and discuss unprecedented data revealing the behaviour of stars at the micromagnitude level. Since then, the observations have been going on, the target sample has enriched and the work of analysis of these data keeps producing first rank results. These analyses are providing the material to address open questions of stellar structure and evolution and to test the so many physical processes at work in stars. Based on this material, an increasing number of interpretation studies is being published, addressing various key aspects: the extension of mixed cores, the structure of near surface convective zones, magnetic activity, mass loss, ... Definitive conclusions will require cross-comparison of results on a larger ground (still being built), but it is already possible at the time of this Second CoRoT Symposium, to show how the various existing results take place in a general framework and contribute to complete our initial scientific objectives. A few results already reveal the potential interest in considering stars and planets globally, as it is stressed in several talks at this symposium. It is also appealing to consider the fast progress in the domain of Red Giants and see how they illustrate the promising potential of space photometry beyond the field of stellar physics, in connex fields like Galactic dynamics and evolution.
Oscillations of the Sun have been used to understand its interior structure. The extension of similar studies to more distant stars has raised many difficulties despite the strong efforts of the international community over the past decades. The CoRo T (Convection Rotation and Planetary Transits) satellite, launched in December 2006, has now measured oscillations and the stellar granulation signature in three main sequence stars that are noticeably hotter than the sun. The oscillation amplitudes are about 1.5 times as large as those in the Sun; the stellar granulation is up to three times as high. The stellar amplitudes are about 25% below the theoretic values, providing a measurement of the nonadiabaticity of the process ruling the oscillations in the outer layers of the stars.
We introduce the main lines and specificities of the CoRoT Seismology Core Programme. The development and consolidation of this programme has been made in the framework of the CoRoT Seismology Working Group. With a few illustrative examples, we show how CoRoT data will help to address various problems associated with present open questions of stellar structure and evolution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا