ترغب بنشر مسار تعليمي؟ اضغط هنا

65 - Eric Emsellem 2014
We study the connection between the large-scale dynamics and the gas fueling toward a central black hole via the analysis of a Milky Way-like simulation at sub-parsec resolution. This allows us to follow a set of processes at various scales (e.g., th e triggering of inward gas motion towards inner resonances via the large-scale bar, the connection to the central black hole via mini spirals) in a self-consistent manner. This simulation provides further insights on the role of shear for the inhibition of star formation within the bar in regions with significant amount of gas. We also witness the decoupling of the central gas and nuclear cluster from the large-scale disc, via interactions with the black hole. This break of symmetry in the mass distribution triggers the formation of gas clumps organised in a time-varying 250 pc ring-like structure, the black hole being offset by about 70 pc from its centre. Some clumps form stars, while most get disrupted or merge. Supernovae feedback further creates bubbles and filaments, some of the gas being expelled to 100 pc or higher above the galaxy plane. This helps remove angular momentum from the gas, which gets closer to the central dark mass. Part of the gas raining down is being accreted, forming a 10~pc polar disc-like structure around the black hole, leading to an episode of star formation. This gives rise to multiple stellar populations with significantly different angular momentum vectors, and may lead to a natural intermittence in the fueling of the black hole.
76 - Eric Emsellem 2014
We present evidence for the presence of a low-amplitude kinematically distinct component in the giant early-type galaxy M87, via datasets obtained with the SAURON and MUSE integral-field spectroscopic units. The MUSE velocity field reveals a strong t wist of ~140 deg within the central 30 arcsec connecting outwards such a kinematically distinct core to a prolate-like rotation around the large-scale photometric major-axis of the galaxy. The existence of these kinematic features within the apparently round central regions of M87 implies a non-axisymmetric and complex shape for this galaxy, which could be further constrained using the presented kinematics. The associated orbital structure should be interpreted together with other tracers of the gravitational potential probed at larger scales (e.g., Globular Clusters, Ultra Compact Dwarfs, Planetary Nebulae): it would offer an insight in the assembly history of one of the brightest galaxies in the Virgo Cluster. These data also demonstrate the potential of the MUSE spectrograph to uncover low-amplitude spectral signatures.
Using the unique dataset obtained within the course of the SAURON project, a radically new view of the structure, dynamics and stellar populations of early-type galaxies has emerged. We show that galaxies come in two broad flavours (slow and fast rot ators), depending on whether or not they exhibit clear large-scale rotation, as indicated via a robust measure of the specific angular momentum of baryons. This property is also linked with other physical characteristics of early-type galaxies, such as: the presence of dynamically decoupled cores, orbital structure and anisotropy, stellar populations and dark matter content. I here report on the observed link between this baryonic angular momentum and a mass sequence, and how this uniquely relates to the building of the red sequence via dissipative/dissipationless mergers and secular evolution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا