ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the linear response of the inner crust of neutron stars within the Random Phase Approximation, employing a Skyrme-type interaction as effective interaction. We adopt the Wigner-Seitz approximation, and consider a single unit cell of the Coul omb lattice which constitutes the inner crust, with a nucleus at its center, surrounded by a sea of free neutrons. With the use of an appropriate operator, it is possible to analyze in detail the properties of the vibrations of the surface of the nucleus and their interaction with the modes of the sea of free neutrons, and to investigate the role of shell effects and of resonant states.
The 1S0 pairing gap associated with the inner crust of a neutron star is calculated, taking into account the coexistence of the nuclear lattice with the sea of free neutrons (finite size effects), as well as medium polarization effects associated wit h the exchange of density and spin fluctuations. Both effects are found to be important and to lead to an overall quenching of the pairing gap. This result, whose quantitative value is dependent on the effective interaction used to generate the single-particle levels, is a consequence of the balance between the attractive (repulsive) induced interaction arising from the exchange of density (spin) modes, balance which in turn is influenced by the presence of the protons and depends on the single-particle structure of the system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا