ترغب بنشر مسار تعليمي؟ اضغط هنا

We aim at unveiling the observational imprint of physical mechanisms that govern planetary formation in young, multiple systems. In particular, we investigate the impact of tidal truncation on the inner circumstellar disks. We observed the emblematic system GG Tau at high-angular resolution: a hierarchical quadruple system composed of low-mass T Tauri binary stars surrounded by a well-studied, massive circumbinary disk in Keplerian rotation. We used the near-IR 4-telescope combiner PIONIER on the VLTI and sparse-aperture-masking techniques on VLT/NaCo to probe this proto-planetary system at sub-AU scales. We report the discovery of a significant closure-phase signal in H and Ks bands that can be reproduced with an additional low-mass companion orbiting GG Tau Ab, at a (projected) separation rho = 31.7 +/- 0.2mas (4.4 au) and PA = 219.6 +/- 0.3deg. This finding offers a simple explanation for several key questions in this system, including the missing-stellar-mass problem and the asymmetry of continuum emission from the inner dust disks observed at millimeter wavelengths. Composed of now five co-eval stars with 0.02 <= Mstar <= 0.7 Msun, the quintuple system GG Tau has become an ideal test case to constrain stellar evolution models at young ages (few 10^6yr).
Previous studies have found that Vega is surrounded by an extended debris disc that is very smooth in the far infrared, but displays possible clumpiness at 850micron and dust emission peaks at 1.3mm. We reobserved Vega at 1.3mm with PdBI to constrain its circumstellar dust distribution. Our observations of a three-field mosaic have a factor of two higher sensitivity than previous observations. We detect Vega photosphere with the expected flux, but none of the previously reported emission peaks that should have been detected at the >6sigma level, with a sensitivity <1mK. This implies that the dust distribution around Vega is principally smooth and circularly symmetric. This also means that no planet is needed to account for dust trapped in mean-motion resonnance.
103 - E. Di Folco 2007
We probed the first 3AU around tau Ceti and epsilon Eridani with the CHARA array (Mt Wilson, USA) in order to gauge the 2micron excess flux emanating from possible hot dust grains in the debris disks and to also resolve the stellar photospheres. High precision visibility amplitude measurements were performed with the FLUOR single mode fiber instrument and telescope pairs on baselines ranging from 22 to 241m of projected length. The short baseline observations allow us to disentangle the contribution of an extended structure from the photospheric emission, while the long baselines constrain the stellar diameter. We have detected a resolved emission around tau Cet, corresponding to a spatially integrated, fractional excess flux of 0.98 +/- 0.21 x 10^{-2} with respect to the photospheric flux in the K-band. Around eps Eri, our measurements can exclude a fractional excess of greater than 0.6x10^{-2} (3sigma). We interpret the photometric excess around tau Cet as a possible signature of hot grains in the inner debris disk and demonstrate that a faint, physical or background, companion can be safely excluded. In addition, we measured both stellar angular diameters with an unprecedented accuracy: Theta_LD(tau Cet)= 2.015 +/- 0.011 mas and Theta_LD(eps Eri)=2.126 +/- 0.014 mas.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا