ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the issue of PAC-Bayesian domain adaptation: We want to learn, from a source domain, a majority vote model dedicated to a target one. Our theoretical contribution brings a new perspective by deriving an upper-bound on the target risk where t he distributions divergence---expressed as a ratio---controls the trade-off between a source error measure and the target voters disagreement. Our bound suggests that one has to focus on regions where the source data is informative.From this result, we derive a PAC-Bayesian generalization bound, and specialize it to linear classifiers. Then, we infer a learning algorithmand perform experiments on real data.
In this paper, we provide two main contributions in PAC-Bayesian theory for domain adaptation where the objective is to learn, from a source distribution, a well-performing majority vote on a different target distribution. On the one hand, we propose an improvement of the previous approach proposed by Germain et al. (2013), that relies on a novel distribution pseudodistance based on a disagreement averaging, allowing us to derive a new tighter PAC-Bayesian domain adaptation bound for the stochastic Gibbs classifier. We specialize it to linear classifiers, and design a learning algorithm which shows interesting results on a synthetic problem and on a popular sentiment annotation task. On the other hand, we generalize these results to multisource domain adaptation allowing us to take into account different source domains. This study opens the door to tackle domain adaptation tasks by making use of all the PAC-Bayesian tools.
This paper provides a theoretical analysis of domain adaptation based on the PAC-Bayesian theory. We propose an improvement of the previous domain adaptation bound obtained by Germain et al. in two ways. We first give another generalization bound tig hter and easier to interpret. Moreover, we provide a new analysis of the constant term appearing in the bound that can be of high interest for developing new algorithmic solutions.
The C-bound, introduced in Lacasse et al., gives a tight upper bound on the risk of a binary majority vote classifier. In this work, we present a first step towards extending this work to more complex outputs, by providing generalizations of the C-bound to the multiclass and multi-label settings.
332 - Emilie Morvant 2014
In machine learning, the domain adaptation problem arrives when the test (target) and the train (source) data are generated from different distributions. A key applied issue is thus the design of algorithms able to generalize on a new distribution, f or which we have no label information. We focus on learning classification models defined as a weighted majority vote over a set of real-val ued functions. In this context, Germain et al. (2013) have shown that a measure of disagreement between these functions is crucial to control. The core of this measure is a theoretical bound--the C-bound (Lacasse et al., 2007)--which involves the disagreement and leads to a well performing majority vote learning algorithm in usual non-adaptative supervised setting: MinCq. In this work, we propose a framework to extend MinCq to a domain adaptation scenario. This procedure takes advantage of the recent perturbed variation divergence between distributions proposed by Harel and Mannor (2012). Justified by a theoretical bound on the target risk of the vote, we provide to MinCq a target sample labeled thanks to a perturbed variation-based self-labeling focused on the regions where the source and target marginals appear similar. We also study the influence of our self-labeling, from which we deduce an original process for tuning the hyperparameters. Finally, our framework called PV-MinCq shows very promising results on a rotation and translation synthetic problem.
This paper generalizes an important result from the PAC-Bayesian literature for binary classification to the case of ensemble methods for structured outputs. We prove a generic version of the Cbound, an upper bound over the risk of models expressed a s a weighted majority vote that is based on the first and second statistical moments of the votes margin. This bound may advantageously $(i)$ be applied on more complex outputs such as multiclass labels and multilabel, and $(ii)$ allow to consider margin relaxations. These results open the way to develop new ensemble methods for structured output prediction with PAC-Bayesian guarantees.
190 - Emilie Morvant 2014
In the past few years, a lot of attention has been devoted to multimedia indexing by fusing multimodal informations. Two kinds of fusion schemes are generally considered: The early fusion and the late fusion. We focus on late classifier fusion, where one combines the scores of each modality at the decision level. To tackle this problem, we investigate a recent and elegant well-founded quadratic program named MinCq coming from the machine learning PAC-Bayesian theory. MinCq looks for the weighted combination, over a set of real-valued functions seen as voters, leading to the lowest misclassification rate, while maximizing the voters diversity. We propose an extension of MinCq tailored to multimedia indexing. Our method is based on an order-preserving pairwise loss adapted to ranking that allows us to improve Mean Averaged Precision measure while taking into account the diversity of the voters that we want to fuse. We provide evidence that this method is naturally adapted to late fusion procedures and confirm the good behavior of our approach on the challenging PASCAL VOC07 benchmark.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا