ترغب بنشر مسار تعليمي؟ اضغط هنا

We report fluorescence investigations and Raman spectroscopy on colloidal nanodiamonds (NDs) obtained via bead assisted sonic disintegration (BASD) of a polycrystalline chemical vapor deposition film. The BASD NDs contain in situ created silicon vaca ncy (SiV) centers. Whereas many NDs exhibit emission from SiV ensembles, we also identify NDs featuring predominant emission from a single bright SiV center. We demonstrate oxidation of the NDs in air as a tool to optimize the crystalline quality of the NDs via removing damaged regions resulting in a reduced ensemble linewidth as well as single photon emission with increased purity. We furthermore investigate the temperature dependent zero-phonon-line fine-structure of a bright single SiV center as well as the polarization properties of its emission and absorption.
We study single silicon vacancy (SiV) centres in chemical vapour deposition (CVD) nanodiamonds on iridium as well as an ensemble of SiV centres in a high quality, low stress CVD diamond film by using temperature dependent luminescence spectroscopy in the temperature range 5-295 K. We investigate in detail the temperature dependent fine structure of the zero-phonon-line (ZPL) of the SiV centres. The ZPL transition is affected by inhomogeneous as well as temperature dependent homogeneous broadening and blue shifts by about 20 cm-1 upon cooling from room temperature to 5 K. We employ excitation power dependent g(2) measurements to explore the temperature dependent internal population dynamics of single SiV centres and infer almost temperature independent dynamics.
Photoluminescence (PL) spectra of single silicon vacancy (SiV) centers frequently feature very narrow room temperature PL lines in the near-infrared (NIR) spectral region, mostly between 820 nm and 840 nm, in addition to the well known zero-phonon-li ne (ZPL) at approx. 738 nm [E. Neu et al., Phys. Rev. B 84, 205211 (2011)]. We here exemplarily prove for a single SiV center that this NIR PL is due to an additional purely electronic transition (ZPL). For the NIR line at 822.7 nm, we find a room temperature linewidth of 1.4 nm (2.6 meV). The line saturates at similar excitation power as the ZPL. ZPL and NIR line exhibit identical polarization properties. Cross-correlation measurements between the ZPL and the NIR line reveal anti-correlated emission and prove that the lines originate from a single SiV center, furthermore indicating a fast switching between the transitions (0.7 ns). g(2) auto-correlation measurements exclude that the NIR line is a vibronic sideband or that it arises due to a transition from/to a meta-stable (shelving) state.
We report on the production of nanodiamonds (NDs) with 70-80 nm size via bead assisted sonic disintegration (BASD) of a polycrystalline chemical vapor deposition (CVD) film. The NDs display high crystalline quality as well as intense narrowband (7 nm ) room temperature luminescence at 738 nm due to in situ incorporated silicon vacancy (SiV) centers. The fluorescence properties at room and cryogenic temperatures indicate that the NDs are, depending on preparation, applicable as single photon sources or as fluorescence labels.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا