ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider a diffuse interface model for tumor growth recently proposed in [Y. Chen, S.M. Wise, V.B. Shenoy, J.S. Lowengrub, A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane, Int. J. Numer. Methods Biomed. Eng. , 30 (2014), 726-754]. In this new approach sharp interfaces are replaced by narrow transition layers arising due to adhesive forces among the cell species. Hence, a continuum thermodynamically consistent model is introduced. The resulting PDE system couples four different types of equations: a Cahn-Hilliard type equation for the tumor cells (which include proliferating and dead cells), a Darcy law for the tissue velocity field, whose divergence may be different from 0 and depend on the other variables, a transport equation for the proliferating (viable) tumor cells, and a quasi-static reaction diffusion equation for the nutrient concentration. We establish existence of weak solutions for the PDE system coupled with suitable initial and boundary conditions. In particular, the proliferation function at the boundary is supposed to be nonnegative on the set where the velocity ${bf u}$ satisfies ${bf u}cdot u>0$, where $ u$ is the outer normal to the boundary of the domain. We also study a singular limit as the diffuse interface coefficient tends to zero.
In this paper we introduce a general abstract formulation of a variational thermomechanical model, by means of a unified derivation via a generalization of the principle of virtual powers for all the variables of the system, including the thermal one . In particular, choosing as thermal variable the entropy of the system, and as driving functional the internal energy, we get a gradient flow structure (in a suitable abstract setting) for the whole nonlinear PDE system. We prove a global in time existence of (weak) solutions result for the Cauchy problem associated to the abstract PDE system as well as uniqueness in case of suitable smoothness assumptions on the functionals.
In this paper we perform an asymptotic analysis for two different vanishing viscosity coefficients occurring in a phase field system of Cahn-Hilliard type that was recently introduced in order to approximate a tumor growth model. In particular, we ex tend some recent results obtained in the preprint arXiv:1401.5943, letting the two positive viscosity parameters tend to zero independently from each other and weakening the conditions on the initial data in such a way as to maintain the nonlinearities of the PDE system as general as possible. Finally, under proper growth conditions on the interaction potential, we prove an error estimate leading also to the uniqueness result for the limit system.
We prove existence, uniqueness, regularity and separation properties for a nonlocal Cahn-Hilliard equation with a reaction term. We deal here with the case of logarithmic potential and degenerate mobility as well an uniformly lipschitz in $u$ reaction term $g(x,t,u).$
We study a PDE system describing the motion of liquid crystals by means of the $Q-$tensor description for the crystals coupled with the incompressible Navier-Stokes system. Using the method of Fourier splitting, we show that solutions of the system t end to the isotropic state at the rate $(1 + t)^{-3/2}$ as $t to infty$.
In this paper we study a distributed optimal control problem for a nonlocal convective Cahn--Hilliard equation with degenerate mobility and singular potential in three dimensions of space. While the cost functional is of standard tracking type, the c ontrol problem under investigation cannot easily be treated via standard techniques for two reasons: the state system is a highly nonlinear system of PDEs containing singular and degenerating terms, and the control variable, which is given by the velocity of the motion occurring in the convective term, is nonlinearly coupled to the state variable. The latter fact makes it necessary to state rather special regularity assumptions for the admissible controls, which, while looking a bit nonstandard, are however quite natural in the corresponding analytical framework. In fact, they are indispensable prerequisites to guarantee the well-posedness of the associated state system. In this contribution, we employ recently proved existence, uniqueness and regularity results for the solution to the associated state system in order to establish the existence of optimal controls and appropriate first-order necessary optimality conditions for the optimal control problem.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا