ترغب بنشر مسار تعليمي؟ اضغط هنا

We present an algorithm for the adaptive tetrahedral integration over the Brillouin zone of crystalline materials, and apply it to compute the optical conductivity, dc conductivity, and thermopower. For these quantities, whose contributions are often localized in small portions of the Brillouin zone, adaptive integration is especially relevant. Our implementation, the woptic package, is tied into the wien2wannier framework and allows including a many-body self energy, e.g. from dynamical mean-field theory (DMFT). Wannier functions and dipole matrix elements are computed with the DFT package Wien2k and Wannier90. For illustration, we show DFT results for fcc-Al and DMFT results for the correlated metal SrVO$_3$.
We propose an unexplored class of absorbing materials for high-efficiency solar cells: heterostructures of transition-metal oxides. In particular, LaVO_3 grown on SrTiO_3 has a direct band gap ~1.1 eV in the optimal range as well as an internal poten tial gradient, which can greatly help to separate the photo-generated electron-hole pairs. Furthermore, oxide heterostructures afford the flexibility to combine LaVO_3 with other materials such as LaFeO_3 in order to achieve even higher efficiencies with band-gap graded solar cells. We use density-functional theory to demonstrate these features.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا