ترغب بنشر مسار تعليمي؟ اضغط هنا

We have measured the hyperfine structure and isotope shifts of the 402.0 nm and 399.6 nm resonance lines in 229Th+. These transitions could provide pathways towards the 229Th isomeric nuclear state excitation. An unexpected negative isotope shift rel ative to 232Th+ is observed for the 399.6 nm line, indicating a strong Coulomb coupling of the excited state to the nucleus. We have developed a new all-order approach to the isotope shift calculations that is generally applicable to heavy atoms and ions with several valence electrons. The theoretical calculations provide an explanation for the negative isotope shift of the 399.6 nm transition and yield a corrected classification of the excited state. The calculated isotope shifts are in good agreement with experimental values.
Using resonant two-step laser excitation of trapped 232Th+ ions, we observe 43 previously unknown energy levels within the energy range from 7.3 to 8.3 eV. The high density of states promises a strongly enhanced electronic bridge excitation of the 22 9mTh nuclear state that is expected in this energy range. From the observation of resonantly enhanced three-photon ionization of Th+, the second ionization potential of thorium can be inferred to lie within the range between 11.9 and 12.3 eV. Pulsed laser radiation in a wide wavelength range from 237 to 289 nm is found to provide efficient photodissociation of molecular ions that are formed in reactions of Th+ with impurities in the buffer gas, leading to a significantly increased storage time for Th+ in the ion trap.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا