ترغب بنشر مسار تعليمي؟ اضغط هنا

We map the neutral atomic gas content of M33 using high resolution VLA and GBT observations and fit a tilted ring model to determine the orientation of the extended gaseous disk and its rotation curve. The disk of M33 warps from 8 kpc outwards withou t substantial change of its inclination with respect to the line of sight. Rotational velocities rise steeply with radius in the inner disk, reaching 100 km/s in 4 kpc, then the rotation curve becomes more perturbed and flatter with velocities as high as 120-130 km/s out to 23 kpc. We derive the stellar mass surface density map of M33s optical disk, via pixel -SED fitting methods based on population synthesis models, which highlights variations in the mass-to-light ratio. The stellar mass surface further out is estimated from deep images of outer disk fields. Stellar and gas maps are then used in the dynamical analysis of the rotation curve to constrain the dark matter distribution which is relevant at all radii. A dark matter halo with a Navarro-Frenk-White density profile in a LCDM cosmology, provides the best fit to the rotation curve for a dark halo concentration C=10 and a total halo mass of 4.3 10^{11}Msun. This imples a baryonic fraction of order 0.02 and the evolutionary history of this galaxy should account for loss of a large fraction of its original baryonic content.
Using the far-infrared emission, as observed by the Herschel Virgo Cluster Survey (HeViCS), and the integrated HI and CO brightness, we infer the dust and total gas mass for a magnitude limited sample of 35 metal rich spiral galaxies in Virgo. The CO flux correlates tightly and linearly with far-infrared fluxes observed by Herschel. Molecules in these galaxies are more closely related to cold dust rather than to dust heated by star formation or to optical/NIR brightness. We show that dust mass establishes a stronger correlation with the total gas mass than with the atomic or molecular component alone. The dust-to-gas ratio increases as the HI deficiency increases, but in highly HI deficient galaxies it stays constant. Dust is in fact less affected than atomic gas by weak cluster interactions, which remove most of the HI gas from outer and high latitudes regions. Highly disturbed galaxies, in a dense cluster environment, can instead loose a considerable fraction of gas and dust from the inner regions of the disk keeping constant the dust-to-gas ratio. There is evidence that the molecular phase is also quenched. This quencing becomes evident by considering the molecular gas mass per unit stellar mass. Its amplitude, if confirmed by future studies, highlights that molecules are missing in Virgo HI deficient spirals, but to a somewhat lesser extent than dust.
The properties of young stellar clusters (YSCs) in M33, identified from the center out to about twice the size of the bright star-forming disk,are investigated. We find 915 discrete MIR sources as far as the extent of the warped HI disk, i.e. 16 kpc from the galaxy center. Their surface density has a steep radial decline beyond 4.5 kpc, and flattens out beyond the optical radius at 8.5 kpc. We are able to identify YSCs out to 12 kpc. At large galactocentric radii, the paucity of very luminous clusters and the relevance of hot dust emission become evident from the analysis of the bolometric and MIR luminosity functions. The YSC mass and size are correlated with a log-log slope of 2.09, similar to that measured for giant molecular clouds in M33 and the Milky Way, which represent the protocluster environment. Most of the YSCs in our sample have low extinction and ages between 3 and 10 Myr. In the inner regions of M33 the clusters span a wide range of mass (10^2<M<3 10^5 msun) and luminosity 10^38<L{bol}<3 10^{41}erg/s, while at galactocentric radii larger than 4 kpc we find a deficiency of massive clusters. Beyond 7 kpc, where the Halpha surface brightness drops significantly, the dominant YSC population has M<10^3 msun and a slightly older age (10 Myrs). This implies the occurrence of star formation events about 10 Myr ago as far as 10-12 kpc from the center of M33. The cluster L{FUV}--L{Halpha} relation is non-linear for L{FUV}<10^{39}erg/s, in agreement with randomly sampled models of the IMF which, furthermore, shows no appreciable variation throughout the M33 disk.
We investigate the nature of 24micron sources in M33 which have weak or no associated Halpha emission. Both bright evolved stars and embedded star forming regions are visible as compact infrared sources in the 8 and 24micron maps of M33 and contribut e to the more diffuse and faint emission in these bands. Can we distinguish the two populations? We carry out deep CO J=2-1 and J=1-0 line searches at the location of compact mid-IR sources to unveil an ongoing star formation process. We use different assumptions to estimate cloud masses from pointed observations and analyze if SED and mid-IR colours can be used to discriminate between evolved stars and star forming regions. Molecular emission has been detected at the location of several sources at the level of 0.3 K km/s or higher in at least one of the CO rotational lines. Even though there are no giant molecular clouds beyond 4kpc in M33, our deep observations have revealed that clouds of smaller mass are very common. Sources which are known to be evolved variable stars show weaker or undetectable CO lines. Evolved stars occupy a well defined region of the IRAC color-color diagrams. Star forming regions are scattered throughout a larger area even though the bulk of the distribution has different IRAC colors than evolved variable stars. We estimate that about half of the 24 micron sources without an Halpha counterpart are genuine embedded star forming regions. Sources with faint but compact Halpha emission have an incomplete Initial Mass Function (IMF) at the high-mass end and are compatible with a population of young clusters with a stochastically sampled, universal IMF.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا