ترغب بنشر مسار تعليمي؟ اضغط هنا

The chaotic diffusion for particles moving in a time dependent potential well is described by using two different procedures: (i) via direct evolution of the mapping describing the dynamics and ; (ii) by the solution of the diffusion equation. The dy namic of the diffusing particles is made by the use of a two dimensional, nonlinear area preserving map for the variables energy and time. The phase space of the system is mixed containing both chaos, periodic regions and invariant spanning curves limiting the diffusion of the chaotic particles. The chaotic evolution for an ensemble of particles is treated as random particles motion and hence described by the diffusion equation. The boundary conditions impose that the particles can not cross the invariant spanning curves, serving as upper boundary for the diffusion, nor the lowest energy domain that is the energy the particles escape from the time moving potential well. The diffusion coefficient is determined via the equation of the mapping while the analytical solution of the diffusion equation gives the probability to find a given particle with a certain energy at a specific time. The momenta of the probability describe qualitatively the behavior of the average energy obtained by numerical simulation, which is investigated either as a function of the time as well as some of the control parameters of the problem.
The scaling invariance for chaotic orbits near a transition from unlimited to limited diffusion in a dissipative standard mapping is explained via the analytical solution of the diffusion equation. It gives the probability of observing a particle wit h a specific action at a given time. We show the diffusion coefficient varies slowly with the time and is responsible to suppress the unlimited diffusion. The momenta of the probability are determined and the behavior of the average squared action is obtained. The limits of small and large time recover the results known in the literature from the phenomenological approach and, as a bonus, a scaling for intermediate time is obtained as dependent on the initial action. The formalism presented is robust enough and can be applied in a variety of other systems including time dependent billiards near a transition from limited to unlimited Fermi acceleration as we show at the end of the letter and in many other systems under the presence of dissipation as well as near a transition from integrability to non integrability.
The chaotic diffusion for a family of Hamiltonian mappings whose angles diverge in the limit of vanishingly action is investigated by using the solution of the diffusion equation. The system is described by a two-dimensional mapping for the variables action, $I$, and angle, $theta$ and controlled by two control parameters: (i) $epsilon$, controlling the nonlinearity of the system, particularly a transition from integrable for $epsilon=0$ to non-integrable for $epsilon e0$ and; (ii) $gamma$ denoting the power of the action in the equation defining the angle. For $epsilon e0$ the phase space is mixed and chaos is present in the system leading to a finite diffusion in the action characterized by the solution of the diffusion equation. The analytical solution is then compared to the numerical simulations showing a remarkable agreement between the two procedures.
Some dynamical properties of non interacting particles in a bouncer model are described. They move under gravity experiencing collisions with a moving platform. The evolution to steady state is described in two cases for dissipative dynamics with ine lastic collisions: (i) for large initial energy; (ii) for low initial energy. For (i) we prove an exponential decay while for (ii) a power law marked by a changeover to the steady state is observed. A relation for collisions and time is obtained and allows us to write relevant observables as temperature and entropy as function of either number of collisions and time.
97 - Edson D. Leonel 2009
The phenomenon of Fermi acceleration is addressed for a dissipative bouncing ball model with external stochastic perturbation. It is shown that the introduction of energy dissipation (inelastic collisions of the particle with the moving wall) is a su fficient condition to break down the process of Fermi acceleration. The phase transition from bounded to unbounded energy growth in the limit of vanishing dissipation is characterized.
49 - Edson D. Leonel 2009
Some scaling properties for classical light ray dynamics inside a periodically corrugated waveguide are studied by use of a simplified two-dimensional nonlinear area-preserving map. It is shown that the phase space is mixed. The chaotic sea is charac terized using scaling arguments revealing critical exponents connected by an analytic relationship. The formalism is widely applicable to systems with mixed phase space, and especially in studies of the transition from integrability to non-integrability, including that in classical billiard problems.
Some dynamical properties of a bouncing ball model under the presence of an external force modeled by two nonlinear terms are studied. The description of the model is made by use of a two dimensional nonlinear measure preserving map on the variables velocity of the particle and time. We show that raising the straight of a control parameter which controls one of the nonlinearities, the positive Lyapunov exponent decreases in the average and suffers abrupt changes. We also show that for a specific range of control parameters, the model exhibits the phenomenon of Fermi acceleration. The explanation of both behaviours is given in terms of the shape of the external force and due to a discontinuity of the moving walls velocity.
The chaotic low energy region of the Fermi-Ulam simplified accelerator model is characterised by use of scaling analysis. It is shown that the average velocity and the roughness (variance of the average velocity) obey scaling functions with the same characteristic exponents. The formalism is widely applicable, including to billiards and to other chaotic systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا