ترغب بنشر مسار تعليمي؟ اضغط هنا

75 - Edmundo M. Monte 2011
We investigate the topology of Schwarzschilds black hole through the immersion of this space-time in spaces of higher dimension. Through the immersions of Kasner and Fronsdal we calculate the extension of the Schwarzschilds black hole.
144 - Edmundo M. Monte 2011
We study the geometrical and topological properties of the bulk (environment space) when we modify the geometry or topology of a brane-world. Through the characterization of a spherically symmetric space-time as a local brane-world immersed into six dimensional pseudo-Euclidean spaces, with different signatures of the bulk, we investigate the existence of a topological difference in the immersed brane-world. In particular the Schwarzschilds brane-world and its Kruskal (or Fronsdal) brane-world extension are examined from point of view of the immersion formalism. We prove that there is a change of signature of the bulk when we consider a local isometric immersion and different topologies of a brane-world in that bulk.
52 - Edmundo M. Monte 2008
The braneworlds models were inspired partly by Kaluza-Kleins theory, where both the gravitational and the gauge fields are obtained from the geometry of a higher dimensional space. The positive aspects of these models consist in perspectives of modif ications it could bring in to particle physics, such as: unification in a TeV scale, quantum gravity in this scale and deviation of Newtons law for small distances. One of the principles of these models is to suppose that all space-times can be embedded in a bulk of higher dimension. The main result in these notes is a theorem showing a mathematical inconsistency of the Randall-Sundrum braneworld model, namely that the Schwarzschild space-time cannot be embedded locally and isometrically in a five dimensional bulk with constant curvature,(for example AdS-5). From the point of view of semi-Riemannian geometry this last result represents a serious restriction to the Randall-Sundrums braneworld model.
161 - M. D. Maia , E. M. Monte 2008
The eventual production of mini black holes by proton-proton collisions at the LHC is predicted by theories with large extra dimensions resolvable at the Tev scale of energies. It is expected that these black holes evaporate shortly after its product ion as a consequence of the Hawking radiation. We show that for theories based on the ADS/CFT correspondence, the produced black holes may have an unstable horizon, which grows proportionally to the square of the distance to the collision point.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا