ترغب بنشر مسار تعليمي؟ اضغط هنا

We explore mechanical properties of top down fabricated, singly clamped inverted conical GaAs nanowires. Combining nanowire lengths of 2-9 $mu$m with foot diameters of 36-935 nm yields fundamental flexural eigenmodes spanning two orders of magnitude from 200 kHz to 42 MHz. We extract a size-independent value of Youngs modulus of (45$pm$3) GPa. With foot diameters down to a few tens of nanometers, the investigated nanowires are promising candidates for ultra-flexible and ultra-sensitive nanomechanical devices.
Confining a laser field between two high reflectivity mirrors of a high-finesse cavity can increase the probability of a given cavity photon to be scattered by an atom traversing the confined photon mode. This enhanced coupling between light and atom s is successfully employed in cavity quantum electrodynamics experiments and led to a very prolific research in quantum optics. The idea of extending such experiments to sub-wavelength sized nanomechanical systems has been recently proposed in the context of optical cavity cooling. Here we present an experiment involving a single nanorod consisting of about 10^9 atoms precisely positioned to plunge into the confined mode of a miniature high finesse Fabry-Perot cavity. We show that the optical transmission of the cavity is affected not only by the static position of the nanorod but also by its vibrational fluctuation. While an imprint of the vibration dynamics is directly detected in the optical transmission, back-action of the light field is also anticipated to quench the nanorod Brownian motion. This experiment shows the first step towards optical cavity controlled dynamics of mechanical nanostructures and opens up new perspectives for sensing and manipulation of optomechanical nanosystems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا