ترغب بنشر مسار تعليمي؟ اضغط هنا

The digital spread of misinformation is one of the leading threats to democracy, public health, and the global economy. Popular strategies for mitigating misinformation include crowdsourcing, machine learning, and media literacy programs that require social media users to classify news in binary terms as either true or false. However, research on peer influence suggests that framing decisions in binary terms can amplify judgment errors and limit social learning, whereas framing decisions in probabilistic terms can reliably improve judgments. In this preregistered experiment, we compare online peer networks that collaboratively evaluate the veracity of news by communicating either binary or probabilistic judgments. Exchanging probabilistic estimates of news veracity substantially improved individual and group judgments, with the effect of eliminating polarization in news evaluation. By contrast, exchanging binary classifications reduced social learning and entrenched polarization. The benefits of probabilistic social learning are robust to participants education, gender, race, income, religion, and partisanship.
Popular approaches to natural language processing create word embeddings based on textual co-occurrence patterns, but often ignore embodied, sensory aspects of language. Here, we introduce the Python package comp-syn, which provides grounded word emb eddings based on the perceptually uniform color distributions of Google Image search results. We demonstrate that comp-syn significantly enriches models of distributional semantics. In particular, we show that (1) comp-syn predicts human judgments of word concreteness with greater accuracy and in a more interpretable fashion than word2vec using low-dimensional word-color embeddings, and (2) comp-syn performs comparably to word2vec on a metaphorical vs. literal word-pair classification task. comp-syn is open-source on PyPi and is compatible with mainstream machine-learning Python packages. Our package release includes word-color embeddings for over 40,000 English words, each associated with crowd-sourced word concreteness judgments.
Since the publication of Complex Contagions and the Weakness of Long Ties in 2007, complex contagions have been studied across an enormous variety of social domains. In reviewing this decade of research, we discuss recent advancements in applied stud ies of complex contagions, particularly in the domains of health, innovation diffusion, social media, and politics. We also discuss how these empirical studies have spurred complementary advancements in the theoretical modeling of contagions, which concern the effects of network topology on diffusion, as well as the effects of individual-level attributes and thresholds. In synthesizing these developments, we suggest three main directions for future research. The first concerns the study of how multiple contagions interact within the same network and across networks, in what may be called an ecology of contagions. The second concerns the study of how the structure of thresholds and their behavioral consequences can vary by individual and social context. The third area concerns the roles of diversity and homophily in the dynamics of complex contagion, including both diversity of demographic profiles among local peers, and the broader notion of structural diversity within a network. Throughout this discussion, we make an effort to highlight the theoretical and empirical opportunities that lie ahead.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا