ترغب بنشر مسار تعليمي؟ اضغط هنا

We provide faster algorithms for the problem of Gaussian summation, which occurs in many machine learning methods. We develop two new extensions - an O(Dp) Taylor expansion for the Gaussian kernel with rigorous error bounds and a new error control sc heme integrating any arbitrary approximation method - within the best discretealgorithmic framework using adaptive hierarchical data structures. We rigorously evaluate these techniques empirically in the context of optimal bandwidth selection in kernel density estimation, revealing the strengths and weaknesses of current state-of-the-art approaches for the first time. Our results demonstrate that the new error control scheme yields improved performance, whereas the series expansion approach is only effective in low dimensions (five or less).
266 - Dongryeol Lee , Arkadas Ozakin , 2011
A three-body potential function can account for interactions among triples of particles which are uncaptured by pairwise interaction functions such as Coulombic or Lennard-Jones potentials. Likewise, a multibody potential of order $n$ can account for interactions among $n$-tuples of particles uncaptured by interaction functions of lower orders. To date, the computation of multibody potential functions for a large number of particles has not been possible due to its $O(N^n)$ scaling cost. In this paper we describe a fast tree-code for efficiently approximating multibody potentials that can be factorized as products of functions of pairwise distances. For the first time, we show how to derive a Barnes-Hut type algorithm for handling interactions among more than two particles. Our algorithm uses two approximation schemes: 1) a deterministic series expansion-based method; 2) a Monte Carlo-based approximation based on the central limit theorem. Our approach guarantees a user-specified bound on the absolute or relative error in the computed potential with an asymptotic probability guarantee. We provide speedup results on a three-body dispersion potential, the Axilrod-Teller potential.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا