ترغب بنشر مسار تعليمي؟ اضغط هنا

Black phosphorus has recently emerged as a promising material for high performance electronic and optoelectronic device for its high mobility, tunable mid-infrared bandgap and anisotropic electronic properties. Dynamical evolution of photo excited ca rriers and its induced change of transient electronic properties are critical for materials high field performance, but remains to be explored for black phosphorus. In this work, we perform angle resolved transient reflection spectroscopy to study the dynamical evolution of anisotropic properties of black phosphorus under photo excitation. We find that the anisotropy of reflectivity is enhanced in the pump induced quasi-equilibrium state, suggesting an extraordinary enhancement of the anisotropy in dynamical conductivity in hot carrier dominated regime. These results raise enormous possibilities of creating high field, angle sensitive electronic, optoelectronic and remote sensing devices exploiting the dynamical electronic anisotropic with black phosphorus.
We investigate the dynamical formation of excitons from photoexcited electron-hole plasma and its subsequent decay dynamics in monolayer MoS2 grown by chemical vapor deposition using ultrafast pump and terahertz probe spectroscopy. Different photoexc ited electron-hole states are resolved based on their distinct responses to THz photon and decay lifetime. The observed transient THz transmission can be fit with two decay components: a fast component with decay lifetime of 20 ps, which is attributed to exciton life time including the exciton formation and subsequent intraexciton relaxation; a slow component with extremely long decay lifetime of several ns due to either localized exciton state or a long live dark exciton state which is uncovered for the first time. The relaxation dynamics is further verified by temperature and pump fluence dependent studies of the decay time constants.
We investigate the valley related carrier dynamics in monolayer MoS2 using helicity resolved non-degenerate ultrafast pump-probe spectroscopy at the vicinity of the high-symmetry K point under the temperature down to 78 K. Monolayer MoS2 shows remark able transient reflection signals, in stark contrast to bilayer and bulk MoS2 due to the enhancement of many-body effect at reduced dimensionality. The helicity resolved ultrafast time-resolved result shows that the valley polarization is preserved for only several ps before scattering process makes it undistinguishable. We suggest that the dynamical degradation of valley polarization is attributable primarily to the exciton trapping by defect states in the exfoliated MoS2 samples. Our experiment and a tight-binding model analysis also show that the perfect valley CD selectivity is fairly robust against disorder at the K point, but quickly decays from the high-symmetry point in the momentum space in the presence of disorder.
Our work is based on the collision-induced coherence of two decay channels along two optical transitions.The quantum interference of pumping processes creates the dark state and the more atoms are pumped in this collision-induced dark state the stron ger the suppression of the spontaneous emission. The efficiency of this suppression is quantified by putting it in comparison with the spontaneous emission on the ultraviolet transition which proceeds in a regular fashion. The branching ratio of these two(visible and ultraviolet) transitions is introduced as the effective measure of the degree of the suppression of the spontaneous emission on the visible transition. Our preliminary calculations show that a significant decrease of the branching ratio with increase of electron densities is reproduced in the theory.
We investigate the ultrafast relaxation dynamics of hot Dirac fermionic quasiparticles in multilayer epitaxial graphene using ultrafast optical differential transmission spectroscopy. We observe DT spectra which are well described by interband transi tions with no electron-hole interaction. Following the initial thermalization and emission of high-energy phonons, the electron cooling is determined by electron-acoustic phonon scattering, found to occur on the time scale of 1 ps for highly doped layers, and 4-11 ps in undoped layers. The spectra also provide strong evidence for the multilayer stucture and doping profile of thermally grown epitaxial graphene on SiC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا