ترغب بنشر مسار تعليمي؟ اضغط هنا

We extend previous work on gamma-ray burst (GRB) afterglows involving hot thermal electrons at the base of a shock-accelerated tail. Using a physically-motivated electron distribution based on first-principles simulations, we compute broadband emissi on from radio to TeV gamma-rays. For the first time, we present the effects of a thermal distribution of electrons on synchrotron self-Compton (SSC) emission. The presence of thermal electrons causes temporal and spectral structure across the entire observable afterglow, which is substantively different from models that assume a pure power-law distribution for the electrons. We show that early-time TeV emission is enhanced by more than an order of magnitude for our fiducial parameters, with a time-varying spectral index that does not occur for a pure power law of electrons. We further show that the X-ray closure relations take a very different, also time-dependent, form when thermal electrons are present; the shape traced out by the X-ray afterglows is a qualitative match to observations of the traditional decay phase.
Relativistic shocks propagating into a medium with low magnetization are generated and sustained by small-scale but very strong magnetic field turbulence. This so-called microturbulence modifies the typical shock acceleration process, and in particul ar that of electrons. In this work we perform Monte Carlo (MC) simulations of electrons encountering shocks with microturbulent fields. The simulations cover a three-dimensional parameter space in shock speed, acceleration efficiency, and peak magnetic field strength. From these, a Markov Chain Monte Carlo (MCMC) method was employed to estimate the maximum electron momentum from the MC-simulated electron spectra. Having estimated this quantity at many points well-distributed over an astrophysically relevant parameter space, an MCMC method was again used to estimate the parameters of an empirical formula that computes the maximum momentum of a Fermi-accelerated electron population anywhere in this parameter space. The maximum energy is well-approximated as a broken power-law in shock speed, with the break occurring when the shock decelerates to the point where electrons can begin to escape upstream from the shock.
We explore the morphology of Type Ia supernova remnants (SNRs) using three-dimensional hydrodynamics modeling and an exponential density profile. Our model distinguishes ejecta from the interstellar medium (ISM), and tracks the ionization age of shoc ked ejecta, both of which allow for additional analysis of the simulated remnants. We also include the adiabatic index as a free parameter, which affects the compressibility of the fluid and emulates the efficiency of cosmic ray acceleration by shock fronts. In addition to generating 3-D images of the simulations, we compute line-of-sight projections through the remnants for comparison against observations of Tychos SNR and SN 1006. We find that several features observed in these two remnants, such as the separation between the fluid discontinuities and the presence of ejecta knots ahead of the forward shock, can be generated by smooth ejecta without any initial clumpiness. Our results are consistent with SN 1006 being dynamically younger than Tychos SNR, and more efficiently accelerating cosmic rays at its forward shock. We conclude that clumpiness is not a necessary condition to reproduce many observed features of Type Ia supernova remnants, particularly the radial profiles and the fleecy emission from ejecta at the central region of both remnants.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا