ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose and analyze the detector of modulated terahertz (THz) radiation based on the graphene field-effect transistor with mechanically floating gate made of graphene as well. The THz component of incoming radiation induces resonant excitation of plasma oscillations in graphene layers (GLs). The rectified component of the ponderomotive force between GLs invokes resonant mechanical swinging of top GL, resulting in the drain current oscillations. To estimate the device responsivity, we solve the hydrodynamic equations for the electrons and holes in graphene governing the plasma-wave response, and the equation describing the graphene membrane oscillations. The combined plasma-mechanical resonance raises the current amplitude by up to four orders of magnitude. The use of graphene as a material for the elastic gate and conductive channel allows the voltage tuning of both resonant frequencies in a wide range.
We theoretically examine the effect of carrier-carrier scattering processes (electron-hole and electron-electron) on the intraband radiation absorption and their contribution to the net dynamic conductivity in optically or electrically pumped graphen e. We demonstrate that the radiation absorption assisted by the carrier-carrier scattering can be stronger than the Drude absorption due to the carrier scattering on disorder. Since the intraband absorption of radiation effectively competes with its interband amplification, this can substantially affect the conditions of the negative dynamic conductivity in the pumped graphene and, hence, the interband terahertz and infrared lasing. We find the threshold values of the frequency and quasi-Fermi energy of nonequilibrium carriers corresponding to the onset of negative dynamic conductivity. The obtained results show that the effect of carrier-carrier scattering shifts the threshold frequency of the radiation amplification in pumped graphene to higher values. In particular, the negative dynamic conductivity is attainable at the frequencies above 6 THz in graphene on SiO2 substrates at room temperature. The threshold frequency can be decreased to markedly lower values in graphene structures with high-k substrates due to screening of the carrier-carrier scattering, particularly at lower temperatures.
We derive the system of hydrodynamic equations governing the collective motion of massless fermions in graphene. The obtained equations demonstrate the lack of Galilean- and Lorentz invariance, and contain a variety of nonlinear terms due to quasi-re lativistic nature of carriers. Using those equations, we show the possibility of soliton formation in electron plasma of gated graphene. The quasi-relativistic effects set an upper limit for soliton amplitude, which marks graphene out of conventional semiconductors. The lack of Galilean and Lorentz invariance of hydrodynamic equations is revealed in spectra of plasma waves in the presence of steady flow, which no longer obey the relations of Doppler shift. The possibility of plasma wave excitation by direct current in graphene channels is also discussed.
We study the spectra and damping of surface plasmon-polaritons in double graphene layer structures. It is shown that application of bias voltage between layers shifts the edge of plasmon absorption associated with the interband transitions. This effe ct could be used in efficient plasmonic modulators. We reveal the influence of spatial dispersion of conductivity on plasmonic spectra and show that it results in the shift of cutoff frequency to the higher values.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا