ترغب بنشر مسار تعليمي؟ اضغط هنا

224 - B. Douc{c}ot , R. Moessner , 2021
We present a theory of optimal topological textures in nonlinear sigma-models with degrees of freedom living in the Grassmannian $mathrm{Gr}(M,N)$ manifold. These textures describe skyrmion lattices of $N$-component fermions in a quantising magnetic field, relevant to the physics of graphene, bilayer and other multicomponent quantum Hall systems near integer filling factors $ u>1$. We derive analytically the optimality condition, minimizing topological charge density fluctuations, for a general Grassmannian sigma model $mathrm{Gr}(M,N)$ on a sphere and a torus, together with counting arguments which show that for any filling factor and number of components there is a critical value of topological charge $d_c$ above which there are no optimal textures. Below $d_c$ a solution of the optimality condition on a torus is unique, while in the case of a sphere one has, in general, a continuum of solutions corresponding to new {it non-Goldstone} zero modes, whose degeneracy is not lifted (via a order from disorder mechanism) by any fermion interactions depending only on the distance on a sphere. We supplement our general theoretical considerations with the exact analytical results for the case of $mathrm{Gr}(2,4)$, appropriate for recent experiments in graphene.
We study the role of zero-point quantum fluctuations in a range of magnetic states which on the classical level are close to spin-aligned ferromagnets. These include Skyrmion textures characterized by non-zero topological charge, and topologically-tr ivial spirals arising from the competition of the Heisenberg and Dzyaloshinskii-Moriya interactions. For the former, we extend our previous results on quantum exactness of classical Bogomolny-Prasad-Sommerfield (BPS) ground-state degeneracies to the general case of Kahler manifolds, with a specific example of Grassmann manifolds $mathrm{Gr(M,N)}$. These are relevant to quantum Hall ferromagnets with $mathrm{N}$ internal states and integer filling factor $mathrm{M}$. A promising candidate for their experimental implementation is monolayer graphene with $mathrm{N=4}$ corresponding to spin and valley degrees of freedom at the charge neutrality point with $mathrm{M=2}$ filled Landau levels. We find that the vanishing of the zero-point fluctuations in taking the continuum limit occurs differently in the case of BPS states compared to the case of more general smooth textures, with the latter exhibiting more pronounced lattice effects. This motivates us to consider the vanishing of zero-point fluctuations in such near-ferromagnets more generally. We present a family of lattice spin models for which the vanishing of zero-point fluctuations is evident, and show that some spirals can be thought of as having nonzero but weak zero-point fluctuations on account of their closeness to this family. Between them, these instances provide concrete illustrations of how the Casimir energy, dependent on the full UV-structure of the theory, evolves as the continuum limit is taken.
113 - B. Doucot , D. L. Kovrizhin , 2016
We identify a large family of ground states of a topological Skyrmion magnet whose classical degeneracy persists to all orders in a semiclassical expansion. This goes along with an exceptional robustness of the concomitant ground state configurations , which are not at all dressed by quantum fluctuations. We trace these twin observations back to a common root: this class of topological ground states saturates a Bogomolny inequality. A similar phenomenology occurs in high-energy physics for some field theories exhibiting supersymmetry. We propose quantum Hall ferromagnets, where these Skyrmions configurations arise naturally as ground states away from integer filling, as the best available laboratory realisations.
Motivated by recent synthesis of the hyper-honeycomb material $beta$-$mathrm{Li_2 Ir O_3}$, we study the dynamical structure factor (DSF) of the corresponding 3D Kitaev quantum spin-liquid (QSL), whose fractionalised degrees of freedom are Majorana f ermions and emergent flux-loops. Properties of this 3D model are known to differ in important ways from those of its 2D counterpart -- it has finite-temperature phase transition, as well as distinct features in Raman response. We show, however, that the qualitative behaviour of the DSF is broadly dimension-independent. Characteristics of the 3D DSF include a response gap even in the gapless QSL phase and an energy dependence deriving from the Majorana fermion density of states. Since the majority of the response is from states containing a single Majorana excitation, our results suggest inelastic neutron scattering as the spectroscopy of choice to illuminate the physics of Majorana fermions in Kitaev QSLs.
We present the theory of dynamical spin-response for the Kitaev honeycomb model, obtaining exact results for the structure factor (SF) in gapped and gapless, Abelian and non-Abelian quantum spin-liquid (QSL) phases. We also describe the advances in m ethodology necessary to compute these results. The structure factor shows signatures of spin-fractionalization into emergent quasiparticles -- Majorana fermions and fluxes of $Z_2$ gauge field. In addition to a broad continuum from spin-fractionalization, we find sharp ($delta$-function) features in the response. These arise in two distinct ways: from excited states containing only (static) fluxes and no (mobile) fermions; and from excited states in which fermions are bound to fluxes. The SF is markedly different in Abelian and non-Abelian QSLs, and bound fermion-flux composites appear only in the non-Abelian phase.
176 - M. J. Rufino , D. L. Kovrizhin , 2012
We develop the theory of electronic Mach-Zehnder interferometers built from quantum Hall edge states at Landau level filling factor u = 2, which have been investigated in a series of recent experiments and theoretical studies. We show that a detaile d treatment of dephasing and non-equlibrium transport is made possible by using bosonization combined with refermionization to study a model in which interactions between electrons are short-range. In particular, this approach allows a non-perturbative treatment of electron tunneling at the quantum point contacts that act as beam-splitters. We find an exact analytic expression at arbitrary tunneling strength for the differential conductance of an interferometer with arms of equal length, and obtain numerically exact results for an interferometer with unequal arms. We compare these results with previous perturbative and approximate ones, and with observations.
We study quantum Hall ferromagnets with a finite density topologically charged spin textures in the presence of internal degrees of freedom such as spin, valley, or layer indices, so that the system is parametrised by a $d$-component complex spinor f ield. In the absence of anisotropies, we find formation of a hexagonal Skyrmion lattice which completely breaks the underlying SU(d) symmetry. The ground state charge density modulation, which inevitably exists in these lattices, vanishes exponentially in $d$. We compute analytically the complete low-lying excitation spectrum, which separates into $d^{2}-1$ gapless acoustic magnetic modes and a magnetophonon. We discuss the role of effective mass anisotropy for SU(3)-valley Skyrmions relevant for experiments with AlAs quantum wells. Here, we find a transition, which breaks a six-fold rotational symmetry of a triangular lattice, followed by a formation of a square lattice at large values of anisotropy strength.
A highly non-thermal electron distribution is generated when quantum Hall edge states originating from sources at different potentials meet at a quantum point contact. The relaxation of this distribution to a stationary form as a function of distance downstream from the contact has been observed in recent experiments [Phys. Rev. Lett. 105, 056803 (2010)]. Here we present an exact treatment of a minimal model for the system at filling factor u=2, with results that account well for the observations.
We study equilibration of quantum Hall edge states at integer filling factors, motivated by experiments involving point contacts at finite bias. Idealising the experimental situation and extending the notion of a quantum quench, we consider time evol ution from an initial non-equilibrium state in a translationally invariant system. We show that electron interactions bring the system into a steady state at long times. Strikingly, this state is not a thermal one: its properties depend on the full functional form of the initial electron distribution, and not simply on the initial energy density. Further, we demonstrate that measurements of the tunneling density of states at long times can yield either an over-estimate or an under-estimate of the energy density, depending on details of the analysis, and discuss this finding in connection with an apparent energy loss observed experimentally. More specifically, we treat several separate cases: for filling factor u=1 we discuss relaxation due to finite-range or Coulomb interactions between electrons in the same channel, and for filling factor u=2 we examine relaxation due to contact interactions between electrons in different channels. In both instances we calculate analytically the long-time asymptotics of the single-particle correlation function. These results are supported by an exact solution at arbitrary time for the problem of relaxation at u=2 from an initial state in which the two channels have electron distributions that are both thermal but with unequal temperatures, for which we also examine the tunneling density of states.
We study theoretically electronic Mach-Zehnder interferometers built from integer quantum Hall edge states, showing that the results of recent experiments can be understood in terms of multiparticle interference effects. These experiments probe the v isibility of Aharonov-Bohm (AB) oscillations in differential conductance as an interferometer is driven out of equilibrium by an applied bias, finding a lobe pattern in visibility as a function of voltage. We calculate the dependence on voltage of the visibility and the phase of AB oscillations at zero temperature, taking into account long range interactions between electrons in the same edge for interferometers operating at a filling fraction $ u=1$. We obtain an exact solution via bosonization for models in which electrons interact only when they are inside the interferometer. This solution is non-perturbative in the tunneling probabilities at quantum point contacts. The results match observations in considerable detail provided the transparency of the incoming contact is close to one-half: the variation in visibility with bias voltage consists of a series of lobes of decreasing amplitude, and the phase of the AB-fringes is practically constant inside the lobes but jumps by $pi$ at the minima of the visibility. We discuss in addition the consequences of approximations made in other recent treatments of this problem. We also formulate perturbation theory in the interaction strength and use this to study the importance of interactions that are not internal to the interferometer.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا