ترغب بنشر مسار تعليمي؟ اضغط هنا

In statistical physics any given system can be either at an equilibrium or away from it. Networks are not an exception. Most network models can be classified as either equilibrium or growing. Here we show that under certain conditions there exists an equilibrium formulation for any growing network model, and vice versa. The equivalence between the equilibrium and nonequilibrium formulations is exact not only asymptotically, but even for any finite system size. The required conditions are satisfied in random geometric graphs in general and causal sets in particular, and to a large extent in some real networks.
112 - Dmitri Krioukov 2012
A way to fight your traffic tickets. The paper was awarded a special prize of $400 that the author did not have to pay to the state of California. In view of enormous, extremely surprising and completely unexpected public interest to this work, we have added an appendix answering the two most common questions.
Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these netw orks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.
Popularity is attractive -- this is the formula underlying preferential attachment, a popular explanation for the emergence of scaling in growing networks. If new connections are made preferentially to more popular nodes, then the resulting distribut ion of the number of connections that nodes have follows power laws observed in many real networks. Preferential attachment has been directly validated for some real networks, including the Internet. Preferential attachment can also be a consequence of different underlying processes based on node fitness, ranking, optimization, random walks, or duplication. Here we show that popularity is just one dimension of attractiveness. Another dimension is similarity. We develop a framework where new connections, instead of preferring popular nodes, optimize certain trade-offs between popularity and similarity. The framework admits a geometric interpretation, in which popularity preference emerges from local optimization. As opposed to preferential attachment, the optimization framework accurately describes large-scale evolution of technological (Internet), social (web of trust), and biological (E.coli metabolic) networks, predicting the probability of new links in them with a remarkable precision. The developed framework can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon.
We show that complex (scale-free) network topologies naturally emerge from hyperbolic metric spaces. Hyperbolic geometry facilitates maximally efficient greedy forwarding in these networks. Greedy forwarding is topology-oblivious. Nevertheless, greed y packets find their destinations with 100% probability following almost optimal shortest paths. This remarkable efficiency sustains even in highly dynamic networks. Our findings suggest that forwarding information through complex networks, such as the Internet, is possible without the overhead of existing routing protocols, and may also find practical applications in overlay networks for tasks such as application-level routing, information sharing, and data distribution.
We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degree distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath. We then establish a mapping between our geometric framework and statistical mechanics of complex networks. This mapping interprets edges in a network as non-interacting fermions whose energies are hyperbolic distances between nodes, while the auxiliary fields coupled to edges are linear functions of these energies or distances. The geometric network ensemble subsumes the standard configuration model and classical random graphs as two limiting cases with degenerate geometric structures. Finally, we show that targeted transport processes without global topology knowledge, made possible by our geometric framework, are maximally efficient, according to all efficiency measures, in networks with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic disturbances and damages to the network structure.
The coarsest approximation of the structure of a complex network, such as the Internet, is a simple undirected unweighted graph. This approximation, however, loses too much detail. In reality, objects represented by vertices and edges in such a graph possess some non-trivial internal structure that varies across and differentiates among distinct types of links or nodes. In this work, we abstract such additional information as network annotations. We introduce a network topology modeling framework that treats annotations as an extended correlation profile of a network. Assuming we have this profile measured for a given network, we present an algorithm to rescale it in order to construct networks of varying size that still reproduce the original measured annotation profile. Using this methodology, we accurately capture the network properties essential for realistic simulations of network applications and protocols, or any other simulations involving complex network topologies, including modeling and simulation of network evolution. We apply our approach to the Autonomous System (AS) topology of the Internet annotated with business relationships between ASs. This topology captures the large-scale structure of the Internet. In depth understanding of this structure and tools to model it are cornerstones of research on future Internet architectures and designs. We find that our techniques are able to accurately capture the structure of annotation correlations within this topology, thus reproducing a number of its important properties in synthetically-generated random graphs.
Network motifs are small building blocks of complex networks. Statistically significant motifs often perform network-specific functions. However, the precise nature of the connection between motifs and the global structure and function of networks re mains elusive. Here we show that the global structure of some real networks is statistically determined by the probability of connections within motifs of size at most 3, once this probability accounts for node degrees. The connectivity profiles of node triples in these networks capture all their local and global properties. This finding impacts methods relying on motif statistical significance, and enriches our understanding of the elementary forces that shape the structure of complex networks.
We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hy perbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the Internet into the hyperbolic plane, and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of Internet routing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا