ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the effects of an applied magnetic field on the magnetic properties of the antiferromagnet GdCoIn$_5$. The prominent anisotropy observed in the susceptibility below $T_N$ is rapidly suppressed by a field of just a few Tesla. Further ev idence of this low energy-scale is obtained from magnetoresistance and magnetostriction experiments. The lattice lenght, particulary, shows a sudden change below 2 Tesla when the magnetic field is applied perpendicular to the crystallographic $hat{c}$-axis. The experimental results as a whole can be attributed to a small but non negligible higher-order crystalline electric field.
A comprehensive experimental and theoretical study of the low temperature properties of GdCoIn$_5$ was performed. Specific heat, thermal expansion, magnetization and electrical resistivity were measured in good quality single crystals down to $^4$He temperatures. All the experiments show a second-order-like phase transition at 30 K probably associated with the onset of antiferromagnetic order. Total energy GGA+U calculations indicate a ground state with magnetic moments localized at the Gd ions and allowed a determination of the Gd-Gd magnetic interactions. Band structure calculations of the electron and phonon contributions to the specific heat and Quantum Monte Carlo calculations of the magnetic contributions to the thermodynamic quantities reproduce quite well the experimental data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا