ترغب بنشر مسار تعليمي؟ اضغط هنا

Certain band insulators allow for the adiabatic pumping of quantized charge or spin for special time-dependences of the Hamiltonian. These topological pumps are closely related to two dimensional topological insulating phases of matter upon rolling t he insulator up to a cylinder and threading it with a time dependent flux. In this article we extend the classification of topological pumps to the Wigner Dyson and chiral classes, coupled to multi-channel leads. The topological index distinguishing different topological classes is formulated in terms of the scattering matrix of the system. We argue that similar to topologically non-trivial insulators, topological pumps are characterized by the appearance of protected gapless end states during the course of a pumping cycle. We show that this property allows for the pumping of quantized charge or spin in the weak coupling limit. Our results may also be applied to two dimensional topological insulators, where they give a physically transparent interpretation of the topologically non-trivial phases in terms of scattering matrices.
When adiabatically varied in time, certain one-dimensional band insulators allow for the quantized noiseless pumping of spin even in the presence of strong spin orbit scattering. These spin pumps are closely related to the quantum spin Hall system, a nd their properties are protected by a time-reversal restriction on the pumping cycle. In this paper we study pumps formed of one-dimensional insulators with a time-reversal restriction on the pumping cycle and a bulk energy gap which arises due to interactions. We find that the correlated gapped phase can lead to novel pumping properties. In particular, systems with $d$ different ground states can give rise to $d+1$ different classes of spin pumps, including a trivial class which does not pump quantized spin and $d$ non-trivial classes allowing for the pumping of quantized spin $hbar/n $ on average per cycle, where $1leq nleq d$. We discuss an example of a spin pump that transfers on average spin $ hbar/2$ without transferring charge.
We study theoretically orbital effects of a parallel magnetic field applied to a disordered superconducting film. We find that the field reduces the phase stiffness and leads to strong quantum phase fluctuations driving the system into an insulating behavior. This microscopic model shows that the critical field decreases with the sheet resistance, in agreement with recent experimental results. The predictions of this model can be used to discriminate spin and orbital effects. We find that experiments conducted by A. Johansson textit{et al.} are more consistent with the orbital mechanism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا