ترغب بنشر مسار تعليمي؟ اضغط هنا

Manipulating the orbital state in a strongly correlated electron system is of fundamental and technological importance for exploring and developing novel electronic phases. Here, we report an unambiguous demonstration of orbital occupancy control bet ween t2g and eg multiplets in quasi-twodimensional transition metal oxide superlattices (SLs) composed of a Mott insulator LaCoO3 and a band insulator LaAlO3. As the LaCoO3 sublayer thickness approaches its fundamental limit (i.e. one unit-cell-thick), the electronic state of the SLs changed from a Mott insulator, in which both t2g and eg orbitals are partially filled, to a band insulator by completely filling (emptying) the t2g (eg) orbitals. We found the reduction of dimensionality has a profound effect on the electronic structure evolution, which is, whereas, insensitive to the epitaxial strain. The remarkable orbital controllability shown here offers a promising pathway for novel applications such as catalysis and photovoltaics, where the energy of d level is an essential parameter.
We examined the temperature (T) evolution of the optical conductivity spectra of Sr$_3$Ir$_2$O$_7$ over a wide range of 10-400 K. The system was barely insulating, exhibiting a small indirect bandgap of $sim$0.1 eV. The low-energy features of the opt ical d-d excitation (${hbar}{omega}$ $<$ 0.3 eV) evolved drastically, whereas such evolution was not observed for the O K-edge X-ray absorption spectra. This suggests that the T evolution in optical spectra is not caused by a change in the bare (undressed) electronic structure, but instead, presumably originates from an abundance of phonon-assisted indirect excitations. Our results showed that the low-energy excitations were dominated by phonon-absorption processes which involve, in particular, the optical phonons. This implies that phonon-assisted processes significantly facilitate the charge dynamics in barely insulating Sr$_3$Ir$_2$O$_7$.
We investigated the unoccupied part of the electronic structure of the oxygen-deficient hafnium oxide (HfO$_{sim1.8}$) using soft x-ray absorption spectroscopy at O $K$ and Hf $N_3$ edges. Band-tail states beneath the unoccupied Hf 5$d$ band are obse rved in the O $K$-edge spectra; combined with ultraviolet photoemission spectrum, this indicates the non-negligible occupation of Hf 5$d$ state. However, Hf $N_3$-edge magnetic circular dichroism spectrum reveals the absence of a long-range ferromagnetic spin order in the oxide. Thus the small amount of $d$ electron gained by the vacancy formation does not show inter-site correlation, contrary to a recent report [M. Venkatesan {it et al.}, Nature {bf 430}, 630 (2004)].
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا