ترغب بنشر مسار تعليمي؟ اضغط هنا

We present two exoplanets detected at Keck Observatory. HD 179079 is a G5 subgiant that hosts a hot Neptune planet with Msini = 27.5 M_earth in a 14.48 d, low-eccentricity orbit. The stellar reflex velocity induced by this planet has a semiamplitude of K = 6.6 m/s. HD 73534 is a G5 subgiant with a Jupiter-like planet of Msini = 1.1 M_jup and K = 16 m/s in a nearly circular 4.85 yr orbit. Both stars are chromospherically inactive and metal-rich. We discuss a known, classical bias in measuring eccentricities for orbits with velocity semiamplitudes, K, comparable to the radial velocity uncertainties. For exoplanets with periods longer than 10 days, the observed exoplanet eccentricity distribution is nearly flat for large amplitude systems (K > 80 m/s), but rises linearly toward low eccentricity for lower amplitude systems (K > 20 m/s).
We report 18 years of Doppler shift measurements of a nearby star, 55 Cancri, that exhibit strong evidence for five orbiting planets. The four previously reported planets are strongly confirmed here. A fifth planet is presented, with an apparent orbi tal period of 260 days, placing it 0.78 AU from the star in the large empty zone between two other planets. The velocity wobble amplitude of 4.9 ms implies a minimum planet mass msini = 45.7 mearthe. The orbital eccentricity is consistent with a circular orbit, but modest eccentricity solutions give similar chisq fits. All five planets reside in low eccentricity orbits, four having eccentricities under 0.1. The outermost planet orbits 5.8 AU from the star and has a minimum mass, msini = 3.8 mjupe, making it more massive than the inner four planets combined. Its orbital distance is the largest for an exoplanet with a well defined orbit. The innermost planet has a semi-major axis of only 0.038 AU and has a minimum mass, msinie, of only 10.8 mearthe, one of the lowest mass exoplanets known. The five known planets within 6 AU define a {em minimum mass protoplanetary nebula} to compare with the classical minimum mass solar nebula. Numerical N-body simulations show this system of five planets to be dynamically stable and show that the planets with periods of 14.65 and 44.3 d are not in a mean-motion resonance. Millimagnitude photometry during 11 years reveals no brightness variations at any of the radial velocity periods, providing support for their interpretation as planetary.
We report the detection of five Jovian mass planets orbiting high metallicity stars. Four of these stars were first observed as part of the N2K program and exhibited low RMS velocity scatter after three consecutive observations. However, follow-up ob servations over the last three years now reveal the presence of longer period planets with orbital periods ranging from 21 days to a few years. HD 11506 is a G0V star with a planet of msini = 4.74 mjup in a 3.85 year orbit. HD 17156 is a G0V star with a 3.12 mjup planet in a 21.2 day orbit. The eccentricity of this orbit is 0.67, one of the highest known for a planet with a relatively short period. The orbital period for this planet places it in a region of parameter space where relatively few planets have been detected. HD 125612 is a G3V star with a planet of msini = 3.5 mjup in a 1.4 year orbit. HD 170469 is a G5IV star with a planet of msini = 0.67 mjup in a 3.13 year orbit. HD 231701 is an F8V star with planet of 1.08 mjup in a 142 day orbit. All of these stars have supersolar metallicity. Three of the five stars were observed photometrically but showed no evidence of brightness variability. A transit search conducted for HD 17156 was negative but covered only 25% of the search space and so is not conclusive.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا