ترغب بنشر مسار تعليمي؟ اضغط هنا

Due to the prevalence of social media websites, one challenge facing computer vision researchers is to devise methods to process and search for persons of interest among the billions of shared photos on these websites. Facebook revealed in a 2013 whi te paper that its users have uploaded more than 250 billion photos, and are uploading 350 million new photos each day. Due to this humongous amount of data, large-scale face search for mining web images is both important and challenging. Despite significant progress in face recognition, searching a large collection of unconstrained face images has not been adequately addressed. To address this challenge, we propose a face search system which combines a fast search procedure, coupled with a state-of-the-art commercial off the shelf (COTS) matcher, in a cascaded framework. Given a probe face, we first filter the large gallery of photos to find the top-k most similar faces using deep features generated from a convolutional neural network. The k candidates are re-ranked by combining similarities from deep features and the COTS matcher. We evaluate the proposed face search system on a gallery containing 80 million web-downloaded face images. Experimental results demonstrate that the deep features are competitive with state-of-the-art methods on unconstrained face recognition benchmarks (LFW and IJB-A). Further, the proposed face search system offers an excellent trade-off between accuracy and scalability on datasets consisting of millions of images. Additionally, in an experiment involving searching for face images of the Tsarnaev brothers, convicted of the Boston Marathon bombing, the proposed face search system could find the younger brothers (Dzhokhar Tsarnaev) photo at rank 1 in 1 second on a 5M gallery and at rank 8 in 7 seconds on an 80M gallery.
The amount of data in our society has been exploding in the era of big data today. In this paper, we address several open challenges of big data stream classification, including high volume, high velocity, high dimensionality, high sparsity, and high class-imbalance. Many existing studies in data mining literature solve data stream classification tasks in a batch learning setting, which suffers from poor efficiency and scalability when dealing with big data. To overcome the limitations, this paper investigates an online learning framework for big data stream classification tasks. Unlike some existing online data stream classification techniques that are often based on first-order online learning, we propose a framework of Sparse Online Classification (SOC) for data stream classification, which includes some state-of-the-art first-order sparse online learning algorithms as special cases and allows us to derive a new effective second-order online learning algorithm for data stream classification. In addition, we also propose a new cost-sensitive sparse online learning algorithm by extending the framework with application to tackle online anomaly detection tasks where class distribution of data could be very imbalanced. We also analyze the theoretical bounds of the proposed method, and finally conduct an extensive set of experiments, in which encouraging results validate the efficacy of the proposed algorithms in comparison to a family of state-of-the-art techniques on a variety of data stream classification tasks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا