ترغب بنشر مسار تعليمي؟ اضغط هنا

By solving numerically the governing Gross-Pitaevskii equation, we study the dynamics of Kelvin waves on a superfluid vortex. After determining the dispersion relation, we monitor the turbulent decay of Kelvin waves with energy initially concentrated at large length scales. At intermediate length scales, we find that the decay is consistent with scaling predictions of theoretical models. Finally we report the unexpected presence of large-length scale phonons in the system.
We examine on the static and dynamical properties of quantum knots in a Bose-Einstein condensate. In particular, we consider the Gross-Pitaevskii model and revise a technique to construct ab initio the condensate wave-function of a generic torus knot . After analysing its excitation energy, we study its dynamics relating the topological parameter to its translational velocity and characteristic size. We also investigate the breaking mechanisms of non shape-preserving torus knots confirming an evidence of universal decaying behaviour previously observed.
We analyse the Bose-Einstein condensation process and the Berezinskii-Kosterlitz-Thouless phase transition within the Gross-Pitaevskii model and their interplay with wave turbulence theory. By using numerical experiments we study how the condensate f raction and the first order correlation function behave with respect to the mass, the energy and the size of the system. By relating the free-particle energy to the temperature we are able to estimate the Berezinskii-Kousterlitz-Thouless transition temperature. Below this transition we observe that for a fixed temperature the superfluid fraction appears to be size-independent leading to a power-law dependence of the condensate fraction with respect to the system size.
We show experimentally that a stable wave propagating into a region characterized by an opposite current may become modulationaly unstable. Experiments have been performed in two independent wave tank facilities; both of them are equipped with a wave maker and a pump for generating a current propagating in the opposite direction with respect to the waves. The experimental results support a recent conjecture based on a current-modified Nonlinear Schrodinger equation which establishes that rogue waves can be triggered by non-homogeneous current characterized by a negative horizontal velocity gradient.
We consider the effect of the wind and the dissipation on the nonlinear stages of the modulational instability. By applying a suitable transformation, we map the forced/damped Nonlinear Schrodinger (NLS) equation into the standard NLS with constant c oefficients. The transformation is valid as long as |{Gamma}t| ll 1, with {Gamma} the growth/damping rate of the waves due to the wind/dissipation. Approximate rogue wave solutions of the equation are presented and discussed. The results shed some lights on the effects of wind and dissipation on the formation of rogue waves.
We present a method for numerically building a vortex knot state in the superfluid wave-function of a Bose-Einstein condensate. We integrate in time the governing Gross-Pitaevskii equation to determine evolution and stability of the two (topologicall y) simplest vortex knots which can be wrapped over a torus. We find that the velocity of a vortex knot depends on the ratio of poloidal and toroidal radius: for smaller ratio, the knot travels faster. Finally, we show how unstable vortex knots break up into vortex rings.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا