ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the spectroscopic confirmation of the Kepler object of interest KOI-183.01 (Kepler-423b), a half-Jupiter mass planet transiting an old solar-like star every 2.7 days. Our analysis is the first to combine the full Kepler photometry (quarters 1-17) with high-precision radial velocity measurements taken with the FIES spectrograph at the Nordic Optical Telescope. We simultaneously modelled the photometric and spectroscopic data-sets using Bayesian approach coupled with Markov chain Monte Carlo sampling. We found that the Kepler pre-search data conditioned (PDC) light curve of KOI-183 exhibits quarter-to-quarter systematic variations of the transit depth, with a peak-to-peak amplitude of about 4.3 % and seasonal trends reoccurring every four quarters. We attributed these systematics to an incorrect assessment of the quarterly variation of the crowding metric. The host star KOI-183 is a G4 dwarf with $M_star=0.85pm0.04$ M$_rm{Sun}$, $R_star=0.95pm0.04$ R$_rm{Sun}$, $T_mathrm{eff}=5560pm80$ K, $[M/H]=-0.10pm0.05$ dex, and with an age of $11pm2$ Gyr. The planet KOI-183b has a mass of $M_mathrm{p}=0.595pm0.081$ M$_mathrm{Jup}$ and a radius of $R_mathrm{p}=1.192pm0.052$ R$_mathrm{Jup}$, yielding a planetary bulk density of $rho_mathrm{p}=0.459pm0.083$ g/cm$^{3}$. The radius of KOI-183b is consistent with both theoretical models for irradiated coreless giant planets and expectations based on empirical laws. The inclination of the stellar spin axis suggests that the system is aligned along the line of sight. We detected a tentative secondary eclipse of the planet at a 2-$sigma$ confidence level ($Delta F_{mathrm{ec}}=14.2pm6.6$ ppm) and found that the orbit might have a small non-zero eccentricity of $e=0.019^{+0.028}_{-0.014}$. With a Bond albedo of $A_mathrm{B}=0.037pm0.019$, KOI-183b is one of the gas-giant planets with the lowest albedo known so far.
We report the discovery of Kepler-77b (alias KOI-127.01), a Saturn-mass transiting planet in a 3.6-day orbit around a metal-rich solar-like star. We combined the publicly available Kepler photometry (quarters 1-13) with high-resolution spectroscopy f rom the Sandiford@McDonald and FIES@NOT spectrographs. We derived the system parameters via a simultaneous joint fit to the photometric and radial velocity measurements. Our analysis is based on the Bayesian approach and is carried out by sampling the parameter posterior distributions using a Markov chain Monte Carlo simulation. Kepler-77b is a moderately inflated planet with a mass of Mp=0.430+/-0.032 Mjup, a radius of Rp=0.960+/-0.016 Rjup, and a bulk density of 0.603+/-0.055 g/cm^3. It orbits a slowly rotating (P=36+/-6 days) G5V star with M*=0.95+/-0.04 Msun, R*=0.99+/-0.02 Rsun, Teff=5520+/-60 K, [M/H]=0.20+/-0.05, that has an age of 7.5+/-2.0 Gyr. The lack of detectable planetary occultation with a depth higher than about 10 ppm implies a planet geometric and Bond albedo of Ag<0.087+/-0.008 and Ab<0.058+/-0.006, respectively, placing Kepler-77b among the gas-giant planets with the lowest albedo known so far. We found neither additional planetary transit signals nor transit-timing variations at a level of about 0.5 minutes, in accordance with the trend that close-in gas giant planets seem to belong to single-planet systems. The 106 transits observed in short-cadence mode by Kepler for nearly 1.2 years show no detectable signatures of the planets passage in front of starspots. We explored the implications of the absence of detectable spot-crossing events for the inclination of the stellar spin-axis, the sky-projected spin-orbit obliquity, and the latitude of magnetically active regions.
Using a model based on the rotational modulation of the visibility of active regions, we analyse the high-accuracy CoRoT lightcurve of the active young star CoRoT102899501. Spectroscopic follow-up observations are used to derive its fundamental param eters. We compare its chromospheric activity level with a model of chrosmospheric activity evolution established by combining relationships between the RHK index and the Rossby number with a recent model of stellar rotation evolution on the main sequence. We measure the spot coverage of the stellar surface as a function of time, and find evidence for a tentative increase from 5-14% at the beginning of the observing run to 13-29% 35 days later. A high level of magnetic activity on CoRoT102899501 is corroborated by a strong emission in the Balmer and Ca II HK lines (logRHK ~ -4). The starspots used as tracers of the star rotation constrain the rotation period to 1.625+/-0.002 days and do not show evidence for differential rotation. The effective temperature (Teff=5180+/-80 K), surface gravity (logg=4.35+/-0.1), and metallicity ([M/H]=0.05+/-0.07 dex) indicate that the object is located near the evolutionary track of a 1.09+/-0.12 M_Sun pre-main sequence star at an age of 23+/-10 Myrs. This value is consistent with the gyro-age of about 8-25 Myrs, inferred using a parameterization of the stellar rotation period as a function of colour index and time established for the I-sequence of stars in stellar clusters. We conclude that the high magnetic activity level and fast rotation of CoRoT102899501 are manifestations of its stellar youth consistent with its estimated evolutionary status and with the detection of a strong Li I 6707.8 A absorption line in its spectrum. We argue that a magnetic activity level comparable to that observed on CoRoT102899501 could have been present on the Sun at the time of planet formation.
Context: CoRoT is a pioneering space mission whose primary goals are stellar seismology and extrasolar planets search. Its surveys of large stellar fields generate numerous planetary candidates whose lightcurves have transit-like features. An extensi ve analytical and observational follow-up effort is undertaken to classify these candidates. Aims: The list of planetary transit candidates from the CoRoT LRa01 star field in the Monoceros constellation towards the Galactic anti-center is presented. The CoRoT observations of LRa01 lasted from 24 October 2007 to 3 March 2008. Methods: 7470 chromatic and 3938 monochromatic lightcurves were acquired and analysed. Instrumental noise and stellar variability were treated with several filtering tools by different teams from the CoRoT community. Different transit search algorithms were applied to the lightcurves. Results: Fifty-one stars were classified as planetary transit candidates in LRa01. Thirty-seven (i.e., 73 % of all candidates) are good planetary candidates based on photometric analysis only. Thirty-two (i.e., 87 % of the good candidates) have been followed-up. At the time of this writing twenty-two cases have been solved and five planets have been discovered: three transiting hot-Jupiters (CoRoT-5b, CoRoT-12b, and CoRoT-21b), the first terrestrial transiting planet (CoRoT-7b), and another planet in the same system (CoRoT-7c, detected by radial velocity survey only). Evidences of another non-transiting planet in the CoRoT-7 system, namely CoRoT-7d, have been recently found.
The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V=12.9 mag F6 dwarf star (M*=1.27 +/- 0.05 Msun, R*=1.37 +/- 0.03 Rsun, Teff=6440 +/- 120 K), with an orbital period of P=2.994329 +/- 0. 000011 days and semi-major axis a=0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (vsini=40+/-5 km/s) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of mp=2.33+/-0.34 Mjup and radius rp=1.43+/-0.03 Rjup, the resulting mean density of CoRoT-11b (rho=0.99+/-0.15 g/cm^3) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior.
449 - Davide Gandolfi 2008
The present work aims at performing a comprehensive census and characterisation of the pre-main sequence (PMS) population in the cometary cloud L1615/L1616, in order to assess the significance of the triggered star formation scenario and investigate the impact of massive stars on its star formation history and mass spectrum. Our study is based on UBVRcIc and JHKs photometry, as well as optical multi-object spectroscopy. We performed a physical parametrisation of the young stellar population in L1615/L1616. We identified 25 new T Tauri stars mainly projected on the dense head of the cometary cloud, almost doubling the current number of known members. We studied the spatial distribution of the cloud members as a function of the age and H$alpha$ emission. The star formation efficiency in the cloud is about 7-8 %, as expected for molecular clouds in the vicinity of OB associations. The slope of the initial mass function (IMF), in the mass range 0.1<M<5.5 $M_{odot}$, is consistent with that of other T and OB associations, providing further support of an universal IMF down to the hydrogen burning limit, regardless of environmental conditions. The cometary appearance, as well as the high star formation efficiency, can be explained in terms of triggered star formation induced by the strong UV radiation from OB stars or supernovae shockwaves. The age spread as well as both the spatial and age distribution of the PMS objects provide strong evidence of sequential, multiple events and possibly still ongoing star formation activity in the cloud.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا