ترغب بنشر مسار تعليمي؟ اضغط هنا

We study a statistical model for the tensor principal component analysis problem introduced by Montanari and Richard: Given a order-$3$ tensor $T$ of the form $T = tau cdot v_0^{otimes 3} + A$, where $tau geq 0$ is a signal-to-noise ratio, $v_0$ is a unit vector, and $A$ is a random noise tensor, the goal is to recover the planted vector $v_0$. For the case that $A$ has iid standard Gaussian entries, we give an efficient algorithm to recover $v_0$ whenever $tau geq omega(n^{3/4} log(n)^{1/4})$, and certify that the recovered vector is close to a maximum likelihood estimator, all with high probability over the random choice of $A$. The previous best algorithms with provable guarantees required $tau geq Omega(n)$. In the regime $tau leq o(n)$, natural tensor-unfolding-based spectral relaxations for the underlying optimization problem break down (in the sense that their integrality gap is large). To go beyond this barrier, we use convex relaxations based on the sum-of-squares method. Our recovery algorithm proceeds by rounding a degree-$4$ sum-of-squares relaxations of the maximum-likelihood-estimation problem for the statistical model. To complement our algorithmic results, we show that degree-$4$ sum-of-squares relaxations break down for $tau leq O(n^{3/4}/log(n)^{1/4})$, which demonstrates that improving our current guarantees (by more than logarithmic factors) would require new techniques or might even be intractable. Finally, we show how to exploit additional problem structure in order to solve our sum-of-squares relaxations, up to some approximation, very efficiently. Our fastest algorithm runs in nearly-linear time using shifted (matrix) power iteration and has similar guarantees as above. The analysis of this algorithm also confirms a variant of a conjecture of Montanari and Richard about singular vectors of tensor unfoldings.
We give a new approach to the dictionary learning (also known as sparse coding) problem of recovering an unknown $ntimes m$ matrix $A$ (for $m geq n$) from examples of the form [ y = Ax + e, ] where $x$ is a random vector in $mathbb R^m$ with at most $tau m$ nonzero coordinates, and $e$ is a random noise vector in $mathbb R^n$ with bounded magnitude. For the case $m=O(n)$, our algorithm recovers every column of $A$ within arbitrarily good constant accuracy in time $m^{O(log m/log(tau^{-1}))}$, in particular achieving polynomial time if $tau = m^{-delta}$ for any $delta>0$, and time $m^{O(log m)}$ if $tau$ is (a sufficiently small) constant. Prior algorithms with comparable assumptions on the distribution required the vector $x$ to be much sparser---at most $sqrt{n}$ nonzero coordinates---and there were intrinsic barriers preventing these algorithms from applying for denser $x$. We achieve this by designing an algorithm for noisy tensor decomposition that can recover, under quite general conditions, an approximate rank-one decomposition of a tensor $T$, given access to a tensor $T$ that is $tau$-close to $T$ in the spectral norm (when considered as a matrix). To our knowledge, this is the first algorithm for tensor decomposition that works in the constant spectral-norm noise regime, where there is no guarantee that the local optima of $T$ and $T$ have similar structures. Our algorithm is based on a novel approach to using and analyzing the Sum of Squares semidefinite programming hierarchy (Parrilo 2000, Lasserre 2001), and it can be viewed as an indication of the utility of this very general and powerful tool for unsupervised learning problems.
The Small-Set Expansion Hypothesis (Raghavendra, Steurer, STOC 2010) is a natural hardness assumption concerning the problem of approximating the edge expansion of small sets in graphs. This hardness assumption is closely connected to the Unique Game s Conjecture (Khot, STOC 2002). In particular, the Small-Set Expansion Hypothesis implies the Unique Games Conjecture (Raghavendra, Steurer, STOC 2010). Our main result is that the Small-Set Expansion Hypothesis is in fact equivalent to a variant of the Unique Games Conjecture. More precisely, the hypothesis is equivalent to the Unique Games Conjecture restricted to instance with a fairly mild condition on the expansion of small sets. Alongside, we obtain the first strong hardness of approximation results for the Balanced Separator and Minimum Linear Arrangement problems. Before, no such hardness was known for these problems even assuming the Unique Games Conjecture. These results not only establish the Small-Set Expansion Hypothesis as a natural unifying hypothesis that implies the Unique Games Conjecture, all its consequences and, in addition, hardness results for other problems like Balanced Separator and Minimum Linear Arrangement, but our results also show that the Small-Set Expansion Hypothesis problem lies at the combinatorial heart of the Unique Games Conjecture. The key technical ingredient is a new way of exploiting the structure of the Unique Games instances obtained from the Small-Set Expansion Hypothesis via (Raghavendra, Steurer, 2010). This additional structure allows us to modify standard reductions in a way that essentially destroys their local-gadget nature. Using this modification, we can argue about the expansion in the graphs produced by the reduction without relying on expansion properties of the underlying Unique Games instance (which would be impossible for a local-gadget reduction).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا