ترغب بنشر مسار تعليمي؟ اضغط هنا

Following the discovery of high-energy (HE; $E>10,{rm MeV}$) and very-high-energy (VHE; $E>100,{rm GeV}$) $gamma$-ray emission from the low-frequency-peaked BL~Lac (LBL) object AP Librae, its electromagnetic spectrum is studied over 60 octaves in ene rgy. Contemporaneous data in radio, optical and UV together with the $gamma$-ray data are used to construct the most precise spectral energy distribution of this source. The data have been found to be modeled with difficulties with single zone homogeneous leptonic synchrotron self-Compton (SSC) radiative scenarios due to the unprecedented width of the high-energy component when compared to the lower-energy component. The two other LBL objects also detected at VHE appear to have similar modeling difficulties. Nevertheless, VHE $gamma$ rays produced in the extended jet could account for the VHE flux observed by H.E.S.S.
The high frequency peaked BL Lac object PG 1553+113 underwent a flaring event in 2012. The High Energy Stereoscopic System (H.E.S.S.) observed this source for two consecutive nights at very high energies (VHE, $E>$100~GeV). The data show an increase of a factor of three of the flux with respect to archival measurements with the same instrument and hints of intra-night variability. The data set has been used to put constraints on possible Lorentz invariance violation (LIV), manifesting itself as an energy dependence of the velocity of light in vacuum, and to set limits on the energy scale at which Quantum Gravity effects causing LIV may arise. With a new method to combine H.E.S.S. and Fermi large area telescope data, the previously poorly known redshift of PG 1555+113 has been determined to be close to the value derived from optical measurements.
The blazar PKS~2155-304 was the target of a multiwavelength campaign from June to October 2013 which widely improves our knowledge of its spectral energy distribution. This campaign involved the NuSTAR satellite (3-79 keV), the Fermi Large Area Teles cope (LAT, 100~MeV-300~GeV) and the High Energy Stereoscopic System (H.E.S.S.) array phase II (with an energy threshold of few tens of GeV). While the observations with NuSTAR extend the X-ray spectrum to higher energies than before, H.E.S.S. phase II, together with the use of the LAT PASS 8, enhance the coverage of the $gamma$-ray regime with an unprecedented precision. In this work, preliminary results from the multi-wavelength analysis are presented.
69 - D. A. Sanchez 2015
The number of extragalactic sources detected at very hight energy (VHE, E$>$100GeV) has dramatically increased during the past years to reach more than fifty. The High Energy Stereoscopic System (H.E.S.S.) had observed the sky for more than 10 years now and discovered about twenty objects. With the advent of the fifth 28 meters telescope, the H.E.S.S. energy range extends down to ~30 GeV. When H.E.S.S. data are combined with the data of the Fermi Large area Telescope, the covered energy range is of several decades allowing an unprecedented description of the spectrum of extragalactic objects. In this talk, a review of the extragalactic sources studied with H.E.S.S. will be given together with first H.E.S.S. phase II results on extragalactic sources.
Very high energy (VHE, $E>$100 GeV) $gamma$-ray flaring activity of the high-frequency peaked BL Lac object pg has been detected by the hess telescopes. The flux of the source increased by a factor of 3 during the nights of 2012 April 26 and 27 with respect to the archival measurements with hint of intra-night variability. No counterpart of this event has been detected in the fla data. This pattern is consistent with VHE $gamma$ ray flaring being caused by the injection of ultrarelativistic particles, emitting $gamma$ rays at the highest energies. The dataset offers a unique opportunity to constrain the redshift of this source at bestz using a novel method based on Bayesian statistics. The indication of intra-night variability is used to introduce a novel method to probe for a possible Lorentz Invariance Violation (LIV), and to set limits on the energy scale at which Quantum Gravity (QG) effects causing LIV may arise. For the subluminal case, the derived limits are $textrm{E}_{rm QG,1}>4.10times 10^{17}$ GeV and $textrm{E}_{rm QG,2}>2.10times 10^{10}$ GeV for linear and quadratic LIV effects, respectively.
We investigate the nonlinear regime of charge and energy transport through Coulomb-blockaded quantum dots. We discuss crossed effects that arise when electrons move in response to thermal gradients (Seebeck effect) or energy flows in reaction to volt age differences (Peltier effect). We find that the differential thermoelectric conductance shows a characteristic Coulomb butterfly structure due to charging effects. Importantly, we show that experimentally observed thermovoltage zeros are caused by the activation of Coulomb resonances at large thermal shifts. Furthermore, the power dissipation asymmetry between the two attached electrodes can be manipulated with the applied voltage, which has implications for the efficient design of nanoscale coolers.
137 - D.A. Sanchez , C. Deil 2013
With the advent of the Large Array Telescope (LAT) on board the Fermi satellite, a new window on the Universe has been opened. Publicly available, the Fermi-LAT data come together with an analysis software named ScienceTools (ST, http://fermi.gsfc.na sa.gov/ssc/data/analysis/software/) which can be run through a Python interface. Nevertheless, for the user, the ST can be hard to run and imply several steps. Users already contributed with scripts for a specific task but no tool allowing a complete analysis is currently available. We present a Python package called {tt Enrico}, designed to facilitate the data analysis. Using only configuration files and front end tools from the command line, the user can easily perform/reproduce an entire Fermi analysis and make plots for publications. It also include new features like debug plots, pipeline execution on one or several CPUs, downloading of the Fermi data or the generation of a sky model from the Fermi catalogue. {tt Enrico} is an open-source project currently available for download at url{https://github.com/gammapy/enrico}
The detection of the high-frequency peaked BL Lac object (HBL) SHBL J001355.9-185406 ($z$=0.095) at high (HE; 100 MeV$<$E$<$300 GeV) and very high-energy (VHE; $E>100,{rm GeV}$) with the fer Large Area Telescope (LAT) and the High Energy Stereoscopic System (H.E.S.S.) is reported. Dedicated observations have been performed with the H.E.S.S. telescopes, leading to a detection at the $5.5,sigma$ significance level. The measured flux above 310 GeV is $(8.3 pm 1.7_{rm{stat}}pm 1.7_{rm{sys}})times 10^{-13}$ photons cms (about 0.6% of that of the Crab Nebula), and the power law spectrum has a photon index of indexHESS. Using 3.5 years of publicly available fla data, a faint counterpart has been detected in the LAT data at the $5.5,sigma$ significance level, with an integrated flux above 300 MeV of $(9.3 pm 3.4_{rm stat} pm 0.8_{rm sys})times 10^{-10}$ photons cms and a photon index of $Gamma = 1.96 pm 0.20_{rm stat} pm 0.08_{rm sys}$. X-ray observations with textit{Swift}-XRT allow the synchrotron peak energy in $ u F_ u$ representation to be located at $sim 1.0,{rm keV}$. The broadband spectral energy distribution is modelled with a one-zone synchrotron self-Compton (SSC) model and the optical data by a black-body emission describing the thermal emission of the host galaxy. The derived parameters are typical for HBLs detected at VHE, with a particle dominated jet.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا