ترغب بنشر مسار تعليمي؟ اضغط هنا

We present the first results from the SAGE-Var program, a follow on to the Spitzer legacy program Surveying the Agents of Galaxy Evolution (SAGE; Meixner, et al. 2006). We obtained 4 epochs of photometry at 3.6 & 4.5 microns covering the bar of the L arge Magellanic Cloud (LMC) and the central region of the Small Magellanic Cloud (SMC) in order to probe the variability of extremely red sources missed by variability surveys conducted at shorter wavelengths, and to provide additional epochs of observation for known variables. Our 6 total epochs of observations allow us to probe infrared variability on 15 different timescales ranging from ~20 days to ~5 years. Out of a full catalog of 1,717,554 (LMC) and 457,760 (SMC) objects, we find 10 (LMC) and 6 (SMC) large amplitude AGB variables without optically measured variability owing to circumstellar dust obscuration. The catalog also contains multiple observations of known AGB variables, type I and II Cepheids, eclipsing variables, R CrB stars and young stellar objects which will be discussed in following papers. Here we present infrared Period-Luminosity (PL) relations for classical Cepheids in the Magellanic Clouds, as well as improved PL relationships for AGB stars pulsating in the fundamental mode using mean magnitudes constructed from 6 epochs of observations.
We combine variability information from the MAssive Compact Halo Objects (MACHO) survey of the Large Magellanic Cloud (LMC) with infrared photometry from the Spitzer Space Telescope Surveying the Agents of a Galaxys Evolution (SAGE) survey to create a dataset of ~30 000 variable red sources. We photometrically classify these sources as being on the first ascent of the Red Giant Branch (RGB), or as being in one of three stages along the Asymptotic Giant Branch (AGB): oxygen-rich, carbon-rich, or highly reddened with indeterminate chemistry (extreme AGB candidates). We present linear period-luminosity relationships for these sources using 8 separate infrared bands (J, H, K, 3.6, 4.5, 5.8, 8.0, and 24 micron) as proxies for the luminosity. We find that the wavelength dependence of the slope of the period-luminosity relationship is different for different photometrically determined classes of AGB stars. Stars photometrically classified as O-rich show the least variation of slope with wavelength, while dust enshrouded extreme AGB stars show a pronounced trend toward steeper slopes with increasing wavelength. We find that O-rich AGB stars pulsating in the fundamental mode obey a period-magnitude relation with a slope of -3.41 +/- 0.04 when magnitude is measured in the 3.6 micron band, in contrast to C-rich AGB stars, which obey a relation of slope -3.77 +/- 0.05.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا