ترغب بنشر مسار تعليمي؟ اضغط هنا

The Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, explores the stellar populations of the Milky Way using the Sloan 2.5-m telescope linked to a high resolution (R~22,500), near-infrared (1. 51-1.70 microns) spectrograph with 300 optical fibers. For over 150,000 predominantly red giant branch stars that APOGEE targeted across the Galactic bulge, disks and halo, the collected high S/N (>100 per half-resolution element) spectra provide accurate (~0.1 km/s) radial velocities, stellar atmospheric parameters, and precise (~0.1 dex) chemical abundances for about 15 chemical species. Here we describe the basic APOGEE data reduction software that reduces multiple 3D raw data cubes into calibrated, well-sampled, combined 1D spectra, as implemented for the SDSS-III/APOGEE data releases (DR10, DR11 and DR12). The processing of the near-IR spectral data of APOGEE presents some challenges for reduction, including automated sky subtraction and telluric correction over a 3 degree diameter field and the combination of spectrally dithered spectra. We also discuss areas for future improvement.
We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and alpha-element abundances of stars over a large part of the Milky Way disk. Using a s ample of ~10,000 kinematically-unbiased red-clump stars with ~5% distance accuracy as tracers, the [alpha/Fe] vs. [Fe/H] distribution of this sample exhibits a bimodality in [alpha/Fe] at intermediate metallicities, -0.9<[Fe/H]<-0.2, but at higher metallicities ([Fe/H]=+0.2) the two sequences smoothly merge. We investigate the effects of the APOGEE selection function and volume filling fraction and find that these have little qualitative impact on the alpha-element abundance patterns. The described abundance pattern is found throughout the range 5<R<11 kpc and 0<|Z|<2 kpc across the Galaxy. The [alpha/Fe] trend of the high-alpha sequence is surprisingly constant throughout the Galaxy, with little variation from region to region (~10%). Using simple galactic chemical evolution models we derive an average star formation efficiency (SFE) in the high-alpha sequence of ~4.5E-10 1/yr, which is quite close to the nearly-constant value found in molecular-gas-dominated regions of nearby spirals. This result suggests that the early evolution of the Milky Way disk was characterized by stars that shared a similar star formation history and were formed in a well-mixed, turbulent, and molecular-dominated ISM with a gas consumption timescale (1/SFE) of ~2 Gyr. Finally, while the two alpha-element sequences in the inner Galaxy can be explained by a single chemical evolutionary track this cannot hold in the outer Galaxy, requiring instead a mix of two or more populations with distinct enrichment histories.
Using deep 21-cm HI data from the Green Bank Telescope we have detected an ~18.3 kpc-long gaseous extension associated with the starbursting dwarf galaxy IC 10. The newly-found feature stretches 1.3 deg to the northwest and has a large radial velocit y gradient reaching to ~65 km/s lower than the IC 10 systemic velocity. A region of higher column density at the end of the extension that possesses a coherent velocity gradient (~10 km/s across ~26 arcmin) transverse to the extension suggests rotation and may be a satellite galaxy of IC 10. The HI mass of IC 10 is 9.5x10^7 (d/805 kpc)^2 Msun and the mass of the new extension is 7.1x10^5 (d/805 kpc)^2 Msun. An IC 10-M31 orbit using known radial velocity and proper motion values for IC 10 show that the HI extension is inconsistent with the trailing portion of the orbit so that an M31-tidal or ram pressure origin seems unlikely. We argue that the most plausible explanation for the new feature is that it is the result of a recent interaction (and possible late merger) with another dwarf galaxy. This interaction could not only have triggered the origin of the recent starburst in IC 10, but could also explain the existence of previously-found counter-rotating HI gas in the periphery of the IC 10 which was interpreted as originating from primordial gas infall.
Commissioning observations with the Apache Point Observatory Galactic Evolution Experiment (APOGEE), part of the Sloan Digital Sky Survey III, have produced radial velocities (RVs) for ~4700 K/M-giant stars in the Milky Way bulge. These high-resoluti on (R sim 22,500), high-S/N (>100 per resolution element), near-infrared (1.51-1.70 um; NIR) spectra provide accurate RVs (epsilon_v~0.2 km/s) for the sample of stars in 18 Galactic bulge fields spanning -1<l<20 deg, |b|<20 deg, and dec>-32 deg. This represents the largest NIR high-resolution spectroscopic sample of giant stars ever assembled in this region of the Galaxy. A cold (sigma_v~30 km/s), high-velocity peak (V_GSR sim +200 km/s) is found to comprise a significant fraction (~10%) of stars in many of these fields. These high RVs have not been detected in previous MW surveys and are not expected for a simple, circularly rotating disk. Preliminary distance estimates rule out an origin from the background Sagittarius tidal stream or a new stream in the MW disk. Comparison to various Galactic models suggests that these high RVs are best explained by stars in orbits of the Galactic bar potential, although some observational features remain unexplained.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا