ترغب بنشر مسار تعليمي؟ اضغط هنا

Superfluidity is an emergent quantum phenomenon which arises due to strong interactions between elementary excitations in liquid helium. These excitations have been probed with great success using techniques such as neutron and light scattering. Howe ver measurements to-date have been limited, quite generally, to average properties of bulk superfluid or the driven response far out of thermal equilibrium. Here, we use cavity optomechanics to probe the thermodynamics of superfluid excitations in real-time. Furthermore, strong light-matter interactions allow both laser cooling and amplification of the thermal motion. This provides a new tool to understand and control the microscopic behaviour of superfluids, including phonon-phonon interactions, quantised vortices and two-dimensional quantum phenomena such as the Berezinskii-Kosterlitz-Thouless transition. The third sound modes studied here also offer a pathway towards quantum optomechanics with thin superfluid films, including femtogram effective masses, high mechanical quality factors, strong phonon-phonon and phonon-vortex interactions, and self-assembly into complex geometries with sub-nanometre feature size.
In many important situations the dominant dephasing mechanism in cryogenic rare-earth-ion doped systems is due to magnetic field fluctuations from spins in the host crystal. Operating at a magnetic field where a transition has a zero first-order-Zeem an (ZEFOZ) shift can greatly reduce this dephasing. Here we identify the location of transitions with zero first-order Zeeman shift for optical transitions in Pr3+:YAG and for spin transitions in Er3+:Y2SiO5. The long coherence times that ZEFOZ would enable would make Pr3+:YAG a strong candidate for achieving the strong coupling regime of cavity QED, and would be an important step forward in creating long-lived telecommunications wavelength quantum memories in Er3+:Y2SiO5. This work relies mostly on published spin Hamiltonian parameters but Raman heterodyne spectroscopy was performed on Pr3+:YAG to measure the parameters for the excited state.
183 - D. L. McAuslan , D. Korystov , 2011
We perform an investigation into the properties of Pr3+:Y2SiO5 whispering gallery mode resonators as a first step towards achieving the strong coupling regime of cavity QED with rare-earth-ion doped crystals. Direct measurement of cavity QED paramete rs are made using photon echoes, giving good agreement with theoretical predictions. By comparing the ions at the surface of the resonator to those in the center it is determined that the physical process of making the resonator does not negatively affect the properties of the ions. Coupling between the ions and resonator is analyzed through the observation of optical bistability and normal-mode splitting.
Here we propose a solid-state quantum memory that does not require spectral holeburning, instead using strong rephasing pulses like traditional photon echo techniques. The memory uses external broadening fields to reduce the optical depth and so swit ch off the collective atom-light interaction when desired. The proposed memory should allow operation with reasonable efficiency in a much broader range of material systems, for instance Er3+ doped crystals which have a transition at 1.5 um. We present analytic theory supported by numerical calculations and initial experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا