ترغب بنشر مسار تعليمي؟ اضغط هنا

We present search results based on next-to-leading order predictions for the pair production of color-adjoint leptons at the LHC. Quantum effects are sizable, dominated by pure QCD corrections, and sensitive to threshold effects. We illustrate the st abilization of scale dependences and confirm an excellent agreement between fixed-order and multi-jet predictions for representative distributions. Finally, we examine the trademark collider signatures of leptogluon pairs. Based on the CMS leptoquark search we derive a mass bound of 1.2-1.3 TeV for charged leptogluons, significantly improving the constraints available in the literature.
We present completely general next-to-leading order predictions for squark and gluino production at the LHC, based on the fully automated MadGolem tool. Without any assumptions on the mass spectrum we predict production rates and examine the structur e of the massless and massive quantum corrections. This allows us to quantify theory uncertainties induced by the spectrum assumptions commonly made. Going beyond total rates we compare general fixed-order distributions to resummed predictions from jet merging. As part of this comprehensive study we present the MadGolem treatment of ultraviolet, infrared and on-shell divergences.
The production of one hard jet in association with missing transverse energy is a major LHC search channel motivated by many scenarios for physics beyond the Standard Model. In scenarios with a weakly interacting dark matter candidate, like supersymm etry, it arises from the associated production of a quark partner with the dark matter agent. We present the next-to-leading order cross section calculation as the first application of the fully automized MadGolem package. We find moderate corrections to the production rate with a strongly reduced theory uncertainty.
We revisit the production of a single Higgs boson from direct gamma gamma -scattering at a photon collider. We compute the total cross section sigma(gamma gamma to h) (for h=h0, H0, A0), and the strength of the effective g_{h gamma gamma} coupling no rmalized to the Standard Model (SM), for both the general Two-Higgs-Doublet Model (2HDM) and the Minimal Supersymmetric Standard Model (MSSM). In both cases the predicted production rates for the CP-even (odd) states render up to 10^4 (10^3) events per 500 invfb of integrated luminosity, in full consistency with all the theoretical and phenomenological constraints. Depending on the channel the maximum rates can be larger or smaller than the SM expectations, but in most of the parameter space they should be well measurable. We analyze how these departures depend on the dynamics underlying each of the models, supersymmetric and non-supersymmetric, and highlight the possible distinctive phenomenological signatures. We demonstrate that this process could be extremely helpful to discern non-supersymmetric Higgs bosons from supersymmetric ones. Furthermore, in the MSSM case, we show that gammagamma-physics could decisively help to overcome the serious impasse afflicting Higgs boson physics at the infamous LHC wedge.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا