ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce the study of forcing sets in mathematical origami. The origami material folds flat along straight line segments called creases, each of which is assigned a folding direction of mountain or valley. A subset $F$ of creases is forcing if th e global folding mountain/valley assignment can be deduced from its restriction to $F$. In this paper we focus on one particular class of foldable patterns called Miura-ori, which divide the plane into congruent parallelograms using horizontal lines and zig-zag vertical lines. We develop efficient algorithms for constructing a minimum forcing set of a Miura-ori map, and for deciding whether a given set of creases is forcing or not. We also provide tight bounds on the size of a forcing set, establishing that the standard mountain-valley assignment for the Miura-ori is the one that requires the most creases in its forcing sets. Additionally, given a partial mountain/valley assignment to a subset of creases of a Miura-ori map, we determine whether the assignment domain can be extended to a locally flat-foldable pattern on all the creases. At the heart of our results is a novel correspondence between flat-foldable Miura-ori maps and $3$-colorings of grid graphs.
When can a plane graph with prescribed edge lengths and prescribed angles (from among ${0,180^circ, 360^circ$}) be folded flat to lie in an infinitesimally thin line, without crossings? This problem generalizes the classic theory of single-vertex fla t origami with prescribed mountain-valley assignment, which corresponds to the case of a cycle graph. We characterize such flat-foldable plane graphs by two obviously necessary but also sufficient conditions, proving a conjecture made in 2001: the angles at each vertex should sum to $360^circ$, and every face of the graph must itself be flat foldable. This characterization leads to a linear-time algorithm for testing flat foldability of plane graphs with prescribed edge lengths and angles, and a polynomial-time algorithm for counting the number of distinct folded states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا