ترغب بنشر مسار تعليمي؟ اضغط هنا

The spontaneous expulsion of applied magnetic field, the Meissner effect, is a defining feature of superconductors; in Type-II superconductors above the lower critical field, this screening takes the form of a lattice of magnetic flux vortices. Using implanted spin-1/2 positive muons, one can measure the vortex lattice field distribution through the spin precession and deduce key parameters of the superconducting ground state, and thereby fundamental properties of the superconducting pairing. Muon spin rotation/relaxation ($mu$SR) experiments have indeed revealed much interesting physics in the underdoped cuprates, where superconductivity is closely related to, or coexistent with, disordered or fluctuating magnetic and charge excitations. Such complications should be absent in overdoped cuprates, which are believed to exhibit conventional Fermi liquid behaviour. These first transverse field (TF)-$mu^+$SR experiments on heavily-overdoped single crystals reveal a superfluid density exhibiting a clear inflection point near 0.5$T_c$, with a striking doping-independent scaling. This reflects hitherto unrecognized physics intrinsic to $d$-wave vortices, evidently generic to the cuprates, and may offer fundamentally new insights into their still-mysterious superconductivity.
284 - D. C. Peets 2010
A recent article suggested that the saturation of low energy spectral weight observed by X-ray absorption spectroscopy in the cuprates at high hole doping could be explained within the single-band Hubbard model. We show that this result is an artifact of inappropriate integration limits.
X-ray absorption spectra on the overdoped high-temperature superconductors Tl_2Ba_2CuO_{6+delta} (Tl-2201) and La_{2-x}Sr_xCuO_{4+delta} (LSCO) reveal a striking departure in the electronic structure from that of the underdoped regime. The upper Hubb ard band, identified with strong correlation effects, is not observed on the oxygen K edge, while the lowest-energy prepeak gains less intensity than expected above p ~ 0.21. This suggests a breakdown of the Zhang-Rice singlet approximation and a loss of correlation effects or a significant shift in the most fundamental parameters of the system, rendering single-band Hubbard models inapplicable. Such fundamental changes suggest that the overdoped regime may offer a distinct route to understanding in the cuprates.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا