ترغب بنشر مسار تعليمي؟ اضغط هنا

During the past 20 years, numerous stellar streams have been discovered in both the Milky Way and the Local Group. These streams have been tidally torn from orbiting systems, which suggests that most of them should roughly trace the orbit of their pr ogenitors around the Galaxy. As a consequence, they play a fundamental role in understanding the formation and evolution of our Galaxy. This project is based on the possibility of applying a technique developed by Binney in 2008 to various tidal streams and overdensities in the Galaxy. The aim is to develop an efficient method to constrain the Galactic gravitational potential, to determine its mass distribution, and to test distance measurements. Here we apply the technique to the Grillmair & Dionatos cold stellar stream. In the case of noise-free data, the results show that the technique provides excellent discrimination against incorrect potentials and that it is possible to predict the heliocentric distance very accurately. This changes dramatically when errors are taken into account, which wash out most of the results. Nevertheless, it is still possible to rule out spherical potentials and set constraints on the distance of a given stream.
The direct detection of dark matter on Earth depends crucially on its density and its velocity distribution on a milliparsec scale. Conventional N-body simulations are unable to access this scale, making the development of other approaches necessary. In this paper, we apply the method developed in Fantin et al. 2008 to a cosmologically-based merger tree, transforming it into a useful instrument to reproduce and analyse the merger history of a Milky Way-like system. The aim of the model is to investigate the implications of any ultra-fine structure for the current and next generation of directional dark matter detectors. We find that the velocity distribution of a Milky Way-like Galaxy is almost smooth, due to the overlap of many streams of particles generated by multiple mergers. Only the merger of a 10^10 Msun analyse can generate significant features in the ultra-local velocity distribution, detectable at the resolution attainable by current experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا