ترغب بنشر مسار تعليمي؟ اضغط هنا

114 - Nan Yang , D. Di Castro , C. Aruta 2012
(CaCuO2)m/(La0.7Sr0.3MnO3)n superlattices, consisting of the infinite layers cuprate CaCuO2 and the optimally doped manganite La1-xSrxMnO3, were grown by pulsed laser deposition. The transport properties are dominated by the manganite block. X-Ray Ab sorption spectroscopy measurements show a clear evidence of an orbital reconstruction at the interface, ascribed to the hybridization between the Cu 3d3z2-r2 and the Mn 3d3z2-r2 orbitals via interface apical oxygen ions. Such a mechanism localizes holes at the interfaces, thus preventing charge transfer to the CaCuO2 block. Some charge (holes) transfer occurs toward the La0.7Sr0.3MnO3 block in strongly oxidized superlattices, contributing to the suppression of the magnetotransport properties.
We report the occurrence of superconductivity, with maximum Tc = 40 K, in superlattices (SLs) based on two insulating oxides, namely CaCuO2 and SrTiO3. In these (CaCuO2)n/(SrTiO3)m SLs, the CuO2 planes belong only to CaCuO2 block, which is an antifer romagnetic insulator. Superconductivity, confined within few unit cells at the CaCuO2/SrTiO3 interface, shows up only when the SLs are grown in a highly oxidizing atmosphere, because of extra oxygen ions entering at the interfaces. Evidence is reported that the hole doping of the CuO2 planes is obtained by charge transfer from the interface layers, which act as charge reservoir.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا