ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetars are an extreme, highly magnetized class of isolated neutron stars whose large X-ray luminosity is believed to be driven by their high magnetic field. In this work we study for the first time the possible very high energy gamma-ray emission above 100 GeV from magnetars, observing the sources 4U 0142+61 and 1E 2259+586. We observed the two sources with atmospheric Cherenkov telescopes in the very high energy range (E > 100 GeV). 4U 0142+61 was observed with the MAGIC I telescope in 2008 for ~25 h and 1E 2259+586 was observed with the MAGIC stereoscopic system in 2010 for ~14 h. The data were analyzed with the standard MAGIC analysis software. Neither magnetar was detected. Upper limits to the differential and integral flux above 200 GeV were computed using the Rolke algorithm. We obtain integral upper limits to the flux of 1.52*10^-12cm^-2 s^-1 and 2.7*10^-12cm^-2 s^-1 with a confidence level of 95% for 4U 0142+61 and 1E 2259+586, respectively. The resulting differential upper limits are presented together with X-ray data and upper limits in the GeV energy range.
The high frequency peaked BL Lac PKS 2155-304 with a redshift of z=0.116 was discovered in 1997 in the very high energy (VHE, E >100GeV) gamma-ray range by the University of Durham Mark VI gamma-ray Cherenkov telescope in Australia with a flux corres ponding to 20% of the Crab Nebula flux. It was later observed and detected with high significance by the Southern Cherenkov observatory H.E.S.S. Detection from the Northern hemisphere is difficult due to challenging observation conditions under large zenith angles. In July 2006, the H.E.S.S. collaboration reported an extraordinary outburst of VHE gamma-emission. During the outburst, the VHE gamma-ray emission was found to be variable on the time scales of minutes and with a mean flux of ~7 times the flux observed from the Crab Nebula. Follow-up observations with the MAGIC-I standalone Cherenkov telescope were triggered by this extraordinary outburst and PKS 2155-304 was observed between 28 July to 2 August 2006 for 15 hours at large zenith angles. Here we present our studies on the behavior of the source after its extraordinary flare and an enhanced analysis method for data taken at high zenith angles. We developed improved methods for event selection that led to a better background suppression. The averaged energy spectrum we derived has a spectral index of -3.5 +/- 0.2 above 400GeV, which is in good agreement with the spectral shape measured by H.E.S.S. during the major flare on MJD 53944. Furthermore, we present the spectral energy distribution modeling of PKS 2155-304. With our observations we increased the duty cycle of the source extending the light curve derived by H.E.S.S. after the outburst. Finally, we find night-by-night variability with a maximal amplitude of a factor three to four and an intranight variability in one of the nights (MJD 53945) with a similar amplitude.
77 - D. Hadasch 2011
The Fermi Large Area Telescope (LAT) has made the first definitive GeV detections of the binaries LS I +61^{circ}303 and LS5039 in the first year after its launch in August 2008. These detections were unambiguous because, apart from a reduced positio nal uncertainty, the gamma-ray emission in each case was orbitally modulated with the corresponding orbital period. The LAT results posed new questions about the nature of these objects, after the unexpected observation of an exponential cutoff in the GeV gamma-ray spectra of both LS I +61^{circ}303 and LS5039, at least along part of their orbital motion. We present here the analysis of new data from the LAT, comprising 2.5 years of observations through which LS I +61^{circ}303 continues to provide some surprises. We find an increase in flux in March 2009 and a steady decrease in the flux fraction modulation. The LAT now detects emission up to 30 GeV, where prior datasets led to upper limits only. At the same time, contemporaneous TeV observations either no longer detected the source, or found it -at least in some orbits- close to periastron, far from the usual phases in which the source usually appeared at TeV energies. The on-source exposure of LS 5039 has also drastically increased along the last years, and whilst our analysis shows no new behavior in comparison with our earlier report, the higher statistics of the current dataset allows for a deeper investigation of its orbital and spectral evolution.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا