ترغب بنشر مسار تعليمي؟ اضغط هنا

The use of emergent constraints to quantify uncertainty for key policy relevant quantities such as Equilibrium Climate Sensitivity (ECS) has become increasingly widespread in recent years. Many researchers, however, claim that emergent constraints ar e inappropriate or even under-report uncertainty. In this paper we contribute to this discussion by examining the emergent constraints methodology in terms of its underpinning statistical assumptions. We argue that the existing frameworks are based on indefensible assumptions, then show how weakening them leads to a more transparent Bayesian framework wherein hitherto ignored sources of uncertainty, such as how reality might differ from models, can be quantified. We present a guided framework for the quantification of additional uncertainties that is linked to the confidence we can have in the underpinning physical arguments for using linear constraints. We provide a software tool for implementing our general framework for emergent constraints and use it to illustrate the framework on a number of recent emergent constraints for ECS. We find that the robustness of any constraint to additional uncertainties depends strongly on the confidence we can have in the underpinning physics, allowing a future framing of the debate over the validity of a particular constraint around the underlying physical arguments, rather than statistical assumptions.
Gravitational wave astrophysics relies heavily on the use of matched filtering both to detect signals in noisy data from detectors, and to perform parameter estimation on those signals. Matched filtering relies upon prior knowledge of the signals exp ected to be produced by a range of astrophysical systems, such as binary black holes. These waveform signals can be computed using numerical relativity techniques, where the Einstein field equations are solved numerically, and the signal is extracted from the simulation. Numerical relativity simulations are, however, computationally expensive, leading to the need for a surrogate model which can predict waveform signals in regions of the physical parameter space which have not been probed directly by simulation. We present a method for producing such a surrogate using Gaussian process regression which is trained directly on waveforms generated by numerical relativity. This model returns not just a single interpolated value for the waveform at a new point, but a full posterior probability distribution on the predicted value. This model is therefore an ideal component in a Bayesian analysis framework, through which the uncertainty in the interpolation can be taken into account when performing parameter estimation of signals.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا