ترغب بنشر مسار تعليمي؟ اضغط هنا

The sensitivity of laser interferometers can be pushed into regimes that enable the direct observation of quantum behaviour of mechanical oscillators. In the past, membranes with subwavelength thickness (thin films) have been proposed as high-mechani cal-quality, low-thermal-noise oscillators. Thin films from a homogenous material, however, generally show considerable light transmission accompanied by heating due to light absorption, which typically reduces the mechanical quality and limits quantum opto-mechanical experiments in particular at low temperatures. In this work, we experimentally analyze a Michelson-Sagnac interferometer including a translucent silicon nitride (SiN) membrane with subwavelength thickness. We find that such an interferometer provides an operational point being optimally suited for quantum opto-mechanical experiments with translucent oscillators. In case of a balanced beam splitter of the interferometer, the membrane can be placed at a node of the electro-magnetic field, which simultaneously provides lowest absorption and optimum laser noise rejection at the signal port. We compare the optical and mechanical model of our interferometer with experimental data and confirm that the SiN membrane can be coupled to a laser power of the order of one Watt at 1064 nm without significantly degrading the membranes quality factor of the order 10^6, at room temperature.
We report on the first demonstration of a fully suspended 10m Fabry-Perot cavity incorporating a waveguide grating as the coupling mirror. The cavity was kept on resonance by reading out the length fluctuations via the Pound-Drever-Hall method and em ploying feedback to the laser frequency. From the achieved finesse of 790 the grating reflectivity was determined to exceed 99.2% at the laser wavelength of 1064,nm, which is in good agreement with rigorous simulations. Our waveguide grating design was based on tantala and fused silica and included a ~20nm thin etch stop layer made of Al2O3 that allowed us to define the grating depth accurately during the fabrication process. Demonstrating stable operation of a waveguide grating featuring high reflectivity in a suspended low-noise cavity, our work paves the way for the potential application of waveguide gratings as mirrors in high-precision interferometry, for instance in future gravitational wave observatories.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا