ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data co llected from October 2012 to November 2013 resulted in a total exposure of 6.9$times$10$^5$ GW$_{rm th}$-ton-days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six $^{241}$Am-$^{13}$C radioactive calibration sources reduced the background by a factor of two for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of $sin^{2}2theta_{13}$ and $|Delta m^2_{ee}|$ were halved as a result of these improvements. Analysis of the relative antineutrino rates and energy spectra between detectors gave $sin^{2}2theta_{13} = 0.084pm0.005$ and $|Delta m^{2}_{ee}|= (2.42pm0.11) times 10^{-3}$ eV$^2$ in the three-neutrino framework.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا