ترغب بنشر مسار تعليمي؟ اضغط هنا

70 - D. R. Hamann 2013
Fully-nonlocal two-projector norm-conserving pseudopotentials are shown to be compatible with a systematic approach to the optimization of convergence with the size of the plane-wave basis. A new formulation of the optimization is developed, includin g the ability to apply it to positive-energy atomic scattering states, and to enforce greater continuity in the pseudopotential. The generalization of norm-conservation to multiple projectors is reviewed and recast for the present purposes. Comparisons among the results of all-electron and one- and two-projector norm-conserving pseudopotential calculations of lattice constants and bulk moduli are made for a group of solids chosen to represent a variety of types of bonding and a sampling of the periodic table.
We review the formalisms of the self-consistent GW approximation to many-body perturbation theory and of the generation of optimally-localized Wannier functions from groups of energy bands. We show that the quasiparticle Bloch wave functions from suc h GW calculations can be used within this Wannier framework. These Wannier functions can be used to interpolate the many-body band structure from the coarse mesh of Brillouin zone points on which it is known from the initial calculation to the usual symmetry lines, and we demonstrate that this procedure is accurate and efficient for the self-consistent GW band structure. The resemblance of these Wannier functions to the bond orbitals discussed in the chemical community led us to expect differences between density-functional and many-body functions that could be qualitatively interpreted. However, the differences proved to be minimal in the cases studied. Detailed results are presented for SrTiO_3 and solid argon.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا