ترغب بنشر مسار تعليمي؟ اضغط هنا

67 - Simon Pigeon 2010
We present a theoretical study of the hydrodynamic properties of a quantum gas of exciton-polaritons in a semiconductor microcavity under a resonant laser excitation. The effect of a spatially extended defect on the superfluid flow is investigated as a function of the flow speed. The processes that are responsible for the nucleation of vortices and solitons in the wake of the defect are characterized, as well as the regimes where the superfluid flow remains unperturbed. Specific features due to the non-equilibrium nature of the polariton fluid are put in evidence.
We present a theory of the quantum vacuum radiation that is generated by a fast modulation of the vacuum Rabi frequency of a single two-level system strongly coupled to a single cavity mode. The dissipative dynamics of the Jaynes-Cummings model in th e presence of anti-rotating wave terms is described by a generalized master equation including non-Markovian terms. Peculiar spectral properties and significant extracavity quantum vacuum radiation output are predicted for state-of-the-art circuit cavity quantum electrodynamics systems with superconducting qubits.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا